ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2410.20295
23
0

DeCaf: A Causal Decoupling Framework for OOD Generalization on Node Classification

27 October 2024
Xiaoxue Han
Huzefa Rangwala
Yue Ning
    BDL
    OOD
    CML
ArXivPDFHTML
Abstract

Graph Neural Networks (GNNs) are susceptible to distribution shifts, creating vulnerability and security issues in critical domains. There is a pressing need to enhance the generalizability of GNNs on out-of-distribution (OOD) test data. Existing methods that target learning an invariant (feature, structure)-label mapping often depend on oversimplified assumptions about the data generation process, which do not adequately reflect the actual dynamics of distribution shifts in graphs. In this paper, we introduce a more realistic graph data generation model using Structural Causal Models (SCMs), allowing us to redefine distribution shifts by pinpointing their origins within the generation process. Building on this, we propose a casual decoupling framework, DeCaf, that independently learns unbiased feature-label and structure-label mappings. We provide a detailed theoretical framework that shows how our approach can effectively mitigate the impact of various distribution shifts. We evaluate DeCaf across both real-world and synthetic datasets that demonstrate different patterns of shifts, confirming its efficacy in enhancing the generalizability of GNNs.

View on arXiv
Comments on this paper