ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2410.23142
  4. Cited By
FAIR-TAT: Improving Model Fairness Using Targeted Adversarial Training

FAIR-TAT: Improving Model Fairness Using Targeted Adversarial Training

30 October 2024
Tejaswini Medi
Steffen Jung
M. Keuper
    AAML
ArXivPDFHTML

Papers citing "FAIR-TAT: Improving Model Fairness Using Targeted Adversarial Training"

2 / 2 papers shown
Title
DispBench: Benchmarking Disparity Estimation to Synthetic Corruptions
DispBench: Benchmarking Disparity Estimation to Synthetic Corruptions
Shashank Agnihotri
Amaan Ansari
Annika Dackermann
Fabian Rösch
M. Keuper
41
0
0
08 May 2025
Are Synthetic Corruptions A Reliable Proxy For Real-World Corruptions?
Are Synthetic Corruptions A Reliable Proxy For Real-World Corruptions?
Shashank Agnihotri
David Schader
Nico Sharei
Mehmet Ege Kaçar
M. Keuper
36
1
0
07 May 2025
1