ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2411.11344
95
2

Mitigating Knowledge Conflicts in Language Model-Driven Question Answering

18 November 2024
Han Cao
Zhaoyang Zhang
Xiangtian Li
Chufan Wu
Hansong Zhang
Wenqing Zhang
    HILM
ArXivPDFHTML
Abstract

In the context of knowledge-driven seq-to-seq generation tasks, such as document-based question answering and document summarization systems, two fundamental knowledge sources play crucial roles: the inherent knowledge embedded within model parameters and the external knowledge obtained through context. Recent studies revealed a significant challenge: when there exists a misalignment between the model's inherent knowledge and the ground truth answers in training data, the system may exhibit problematic behaviors during inference, such as ignoring input context, or generating unfaithful content. Our investigation proposes a strategy to minimize hallucination by building explicit connection between source inputs and generated outputs. We specifically target a common hallucination pattern in question answering, examining how the correspondence between entities and their contexts during model training influences the system's performance at inference time.

View on arXiv
Comments on this paper