Point Cloud Unsupervised Pre-training via 3D Gaussian Splatting

Pre-training on large-scale unlabeled datasets contribute to the model achieving powerful performance on 3D vision tasks, especially when annotations are limited. However, existing rendering-based self-supervised frameworks are computationally demanding and memory-intensive during pre-training due to the inherent nature of volume rendering. In this paper, we propose an efficient framework named GS to learn point cloud representation, which seamlessly integrates fast 3D Gaussian Splatting into the rendering-based framework. The core idea behind our framework is to pre-train the point cloud encoder by comparing rendered RGB images with real RGB images, as only Gaussian points enriched with learned rich geometric and appearance information can produce high-quality renderings. Specifically, we back-project the input RGB-D images into 3D space and use a point cloud encoder to extract point-wise features. Then, we predict 3D Gaussian points of the scene from the learned point cloud features and uses a tile-based rasterizer for image rendering. Finally, the pre-trained point cloud encoder can be fine-tuned to adapt to various downstream 3D tasks, including high-level perception tasks such as 3D segmentation and detection, as well as low-level tasks such as 3D scene reconstruction. Extensive experiments on downstream tasks demonstrate the strong transferability of the pre-trained point cloud encoder and the effectiveness of our self-supervised learning framework. In addition, our GS framework is highly efficient, achieving approximately 9 pre-training speedup and less than 0.25 memory cost compared to the previous rendering-based framework Ponder.
View on arXiv