ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2412.07081
  4. Cited By
Sequential Controlled Langevin Diffusions

Sequential Controlled Langevin Diffusions

10 December 2024
Junhua Chen
Lorenz Richter
Julius Berner
Denis Blessing
Gerhard Neumann
A. Anandkumar
ArXiv (abs)PDFHTML

Papers citing "Sequential Controlled Langevin Diffusions"

15 / 15 papers shown
Title
Progressive Inference-Time Annealing of Diffusion Models for Sampling from Boltzmann Densities
Progressive Inference-Time Annealing of Diffusion Models for Sampling from Boltzmann Densities
Tara Akhound-Sadegh
Jungyoon Lee
A. Bose
Valentin De Bortoli
Arnaud Doucet
Michael M. Bronstein
Dominique Beaini
Siamak Ravanbakhsh
Kirill Neklyudov
Alexander Tong
DiffM
11
0
0
19 Jun 2025
Rethinking Losses for Diffusion Bridge Samplers
Rethinking Losses for Diffusion Bridge Samplers
Sebastian Sanokowski
Lukas Gruber
Christoph Bartmann
Sepp Hochreiter
Sebastian Lehner
DiffM
117
0
0
12 Jun 2025
RNE: a plug-and-play framework for diffusion density estimation and inference-time control
RNE: a plug-and-play framework for diffusion density estimation and inference-time control
Jiajun He
Jose Miguel Hernandez-Lobato
Yuanqi Du
Francisco Vargas
92
0
0
06 Jun 2025
Progressive Tempering Sampler with Diffusion
Severi Rissanen
RuiKang OuYang
Jiajun He
Wenlin Chen
Markus Heinonen
Arno Solin
José Miguel Hernández-Lobato
DiffM
99
1
0
05 Jun 2025
Solving Inverse Problems via Diffusion-Based Priors: An Approximation-Free Ensemble Sampling Approach
Solving Inverse Problems via Diffusion-Based Priors: An Approximation-Free Ensemble Sampling Approach
Haoxuan Chen
Yinuo Ren
Martin Renqiang Min
Lexing Ying
Zachary Izzo
DiffMMedIm
66
2
0
04 Jun 2025
On scalable and efficient training of diffusion samplers
On scalable and efficient training of diffusion samplers
Minkyu Kim
Kiyoung Seong
Dongyeop Woo
SungSoo Ahn
Minsu Kim
DiffM
132
0
0
26 May 2025
Discrete Neural Flow Samplers with Locally Equivariant Transformer
Discrete Neural Flow Samplers with Locally Equivariant Transformer
Zijing Ou
Ruixiang Zhang
Yingzhen Li
79
0
0
23 May 2025
Adjoint Sampling: Highly Scalable Diffusion Samplers via Adjoint Matching
Adjoint Sampling: Highly Scalable Diffusion Samplers via Adjoint Matching
Aaron J. Havens
Benjamin Kurt Miller
Bing Yan
Carles Domingo-Enrich
Anuroop Sriram
...
Brandon Amos
Brian Karrer
Xiang Fu
Guan-Horng Liu
Ricky T. Q. Chen
DiffM
176
3
0
16 Apr 2025
Improving the evaluation of samplers on multi-modal targets
Improving the evaluation of samplers on multi-modal targets
Louis Grenioux
Maxence Noble
Marylou Gabrié
454
0
0
11 Apr 2025
Value Gradient Sampler: Sampling as Sequential Decision Making
Value Gradient Sampler: Sampling as Sequential Decision Making
Sangwoong Yoon
Himchan Hwang
Hyeokju Jeong
Dong Kyu Shin
Che-Sang Park
Sehee Kwon
Frank C. Park
139
0
0
18 Feb 2025
Single-Step Consistent Diffusion Samplers
Single-Step Consistent Diffusion Samplers
Pascal Jutras-Dubé
Patrick Pynadath
Ruqi Zhang
DiffM
161
0
0
17 Feb 2025
Training Neural Samplers with Reverse Diffusive KL Divergence
Training Neural Samplers with Reverse Diffusive KL Divergence
Wenlin Chen
Jiajun He
Mingtian Zhang
David Barber
José Miguel Hernández-Lobato
DiffM
126
8
0
16 Oct 2024
NETS: A Non-Equilibrium Transport Sampler
NETS: A Non-Equilibrium Transport Sampler
M. S. Albergo
Eric Vanden-Eijnden
DiffM
136
22
0
03 Oct 2024
Importance Corrected Neural JKO Sampling
Importance Corrected Neural JKO Sampling
Johannes Hertrich
Robert Gruhlke
102
2
0
29 Jul 2024
Amortizing intractable inference in diffusion models for vision, language, and control
Amortizing intractable inference in diffusion models for vision, language, and control
S. Venkatraman
Moksh Jain
Luca Scimeca
Minsu Kim
Marcin Sendera
...
Alexandre Adam
Jarrid Rector-Brooks
Yoshua Bengio
Glen Berseth
Nikolay Malkin
189
32
0
31 May 2024
1