ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2412.11569
  4. Cited By
The dark side of the forces: assessing non-conservative force models for atomistic machine learning

The dark side of the forces: assessing non-conservative force models for atomistic machine learning

16 December 2024
Filippo Bigi
Marcel F. Langer
Michele Ceriotti
    AI4CE
ArXivPDFHTML

Papers citing "The dark side of the forces: assessing non-conservative force models for atomistic machine learning"

1 / 1 papers shown
Title
How simple can you go? An off-the-shelf transformer approach to molecular dynamics
Max Eissler
Tim Korjakow
Stefan Ganscha
Oliver T. Unke
Klaus-Robert Müller
Stefan Gugler
53
1
0
03 Mar 2025
1