ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2412.15242
68
1

Script-Based Dialog Policy Planning for LLM-Powered Conversational Agents: A Basic Architecture for an "AI Therapist"

13 December 2024
Robert Wasenmüller
Kevin Hilbert
Christoph Benzmüller
    LM&Ro
ArXivPDFHTML
Abstract

Large Language Model (LLM)-Powered Conversational Agents have the potential to provide users with scaled behavioral healthcare support, and potentially even deliver full-scale "AI therapy'" in the future. While such agents can already conduct fluent and proactive emotional support conversations, they inherently lack the ability to (a) consistently and reliably act by predefined rules to align their conversation with an overarching therapeutic concept and (b) make their decision paths inspectable for risk management and clinical evaluation -- both essential requirements for an "AI Therapist". In this work, we introduce a novel paradigm for dialog policy planning in conversational agents enabling them to (a) act according to an expert-written "script" that outlines the therapeutic approach and (b) explicitly transition through a finite set of states over the course of the conversation. The script acts as a deterministic component, constraining the LLM's behavior in desirable ways and establishing a basic architecture for an AI Therapist. We implement two variants of Script-Based Dialog Policy Planning using different prompting techniques and synthesize a total of 100 conversations with LLM-simulated patients. The results demonstrate the feasibility of this new technology and provide insights into the efficiency and effectiveness of different implementation variants.

View on arXiv
Comments on this paper