ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2412.18362
52
1

Point-DeepONet: A Deep Operator Network Integrating PointNet for Nonlinear Analysis of Non-Parametric 3D Geometries and Load Conditions

24 December 2024
Jangseop Park
Namwoo Kang
    AI4CE
    3DPC
ArXivPDFHTML
Abstract

Nonlinear structural analyses in engineering often require extensive finite element simulations, limiting their applicability in design optimization, uncertainty quantification, and real-time control. Conventional deep learning surrogates, such as convolutional neural networks (CNNs), physics-informed neural networks (PINNs), and fourier neural operators (FNOs), face challenges with complex non-parametric three-dimensional (3D) geometries, directionally varying loads, and high-fidelity predictions on unstructured meshes. This work presents Point-DeepONet, an operator-learning-based surrogate that integrates PointNet into the DeepONet framework. By directly processing non-parametric point clouds and incorporating signed distance functions (SDF) for geometric context, Point-DeepONet accurately predicts three-dimensional displacement and von Mises stress fields without mesh parameterization or retraining. Trained using only about 5,000 nodes (2.5% of the original 200,000-node mesh), Point-DeepONet can still predict the entire mesh at high fidelity, achieving a coefficient of determination reaching 0.987 for displacement and 0.923 for von Mises stress under a horizontal load case. Compared to nonlinear finite element analyses that require about 19.32 minutes per case, Point-DeepONet provides predictions in mere seconds-approximately 400 times faster-while maintaining excellent scalability and accuracy with increasing dataset sizes. These findings highlight the potential of Point-DeepONet to enable rapid, high-fidelity structural analyses, ultimately supporting more effective design exploration and informed decision-making in complex engineering workflows.

View on arXiv
Comments on this paper