ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2026 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2501.10663
254
2
v1v2 (latest)

PB-NBV: Efficient Projection-Based Next-Best-View Planning Framework for Reconstruction of Unknown Objects

IEEE Robotics and Automation Letters (IEEE RA-L), 2025
18 January 2025
Zhizhou Jia
Yongqian Li
Qun Hao
Shaohui Zhang
ArXiv (abs)PDFHTMLGithub
Main:7 Pages
13 Figures
Bibliography:2 Pages
Abstract

Completely capturing the three-dimensional (3D) data of an object is essential in industrial and robotic applications. The task of next-best-view (NBV) planning is to calculate the next optimal viewpoint based on the current data, gradually achieving a complete 3D reconstruction of the object. However, many existing NBV planning algorithms incur heavy computational costs due to the extensive use of ray-casting. Specifically, this framework refits different types of voxel clusters into ellipsoids based on the voxel structure. Then, the next optimal viewpoint is selected from the candidate views using a projection-based viewpoint quality evaluation function in conjunction with a global partitioning strategy. This process replaces extensive ray-casting, significantly improving the computational efficiency. Comparison experiments in the simulation environment show that our framework achieves the highest point cloud coverage with low computational time compared to other frameworks. The real-world experiments also confirm the efficiency and feasibility of the framework. Our method will be made open source to benefit the community.

View on arXiv
Comments on this paper