ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2501.12243
99
0

FOCUS: First Order Concentrated Updating Scheme

21 January 2025
Yizhou Liu
Ziming Liu
Jeff Gore
    ODL
ArXivPDFHTML
Abstract

Large language models (LLMs) demonstrate remarkable performance, and improving their pre-training process appears to be key to enhancing their capabilities further. Based on the documented success of Adam, learning rate decay, and weight decay, we hypothesize that the pre-training loss landscape features a narrowing valley structure. Through experiments with synthetic loss functions, we discover that when gradient query noise is high relative to the valley's sharpness, Adam's performance falls behind that of Signum because Adam reduces the effective step size too drastically. This observation led us to develop FOCUS, an optimizer that enhances Signum by incorporating attraction toward moving averaged parameters, allowing it to handle noise better while maintaining larger step sizes. In training GPT-2, FOCUS proves to be more stable than Signum and faster than Adam. These results suggest that gradient noise may be an underappreciated limiting factor in LLM training, and FOCUS offers promising solutions.

View on arXiv
Comments on this paper