ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2501.12975
75
1

OnionEval: An Unified Evaluation of Fact-conflicting Hallucination for Small-Large Language Models

22 January 2025
Chongren Sun
Y. Li
Di Wu
Benoit Boulet
    HILM
    LRM
ArXivPDFHTML
Abstract

Large Language Models (LLMs) are highly capable but require significant computational resources for both training and inference. Within the LLM family, smaller models (those with fewer than 10 billion parameters) also perform well across various tasks. However, these smaller models share similar limitations to their larger counterparts, including the tendency to hallucinate. Despite the existence of many benchmarks to evaluate hallucination in LLMs, few have specifically focused on small LLMs (SLLMs). Additionally, SLLMs show widely varying performance across different benchmarks. In this paper, we introduce OnionEval, a multi-layer structured framework with a specific metric called the context-influence score (CI), designed to effectively assess the fact-conflicting hallucination tendencies of small LLMs across different contextual levels. Our experimental results reveal a key feature of SLLMs: they excel in factual analysis but face challenges with context reasoning. Further investigation shows that a simple Chain-of-Thought strategy can significantly reduce these limitations, improving the practical usefulness of SLLMs in real-world applications.

View on arXiv
Comments on this paper