ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2502.13144
  4. Cited By
RAD: Training an End-to-End Driving Policy via Large-Scale 3DGS-based Reinforcement Learning

RAD: Training an End-to-End Driving Policy via Large-Scale 3DGS-based Reinforcement Learning

18 February 2025
Hao Gao
Shaoyu Chen
Bo Jiang
Bencheng Liao
Yiang Shi
Xiaoyang Guo
Yuechuan Pu
Haoran Yin
Xiangyu Li
Xinbang Zhang
Y. Zhang
Wenyu Liu
Qian Zhang
Xinggang Wang
ArXivPDFHTML

Papers citing "RAD: Training an End-to-End Driving Policy via Large-Scale 3DGS-based Reinforcement Learning"

2 / 2 papers shown
Title
End-to-End Driving with Online Trajectory Evaluation via BEV World Model
End-to-End Driving with Online Trajectory Evaluation via BEV World Model
Yingyan Li
Yuqi Wang
Yang Liu
Jiawei He
Lue Fan
Zhaoxiang Zhang
OffRL
44
0
0
02 Apr 2025
MTGS: Multi-Traversal Gaussian Splatting
MTGS: Multi-Traversal Gaussian Splatting
Tianyu Li
Yihang Qiu
Zhenhua Wu
Carl Lindström
Peng Su
Matthias Nießner
Hongyang Li
3DGS
60
0
0
16 Mar 2025
1