ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2502.13185
  4. Cited By
CondensNet: Enabling stable long-term climate simulations via hybrid deep learning models with adaptive physical constraints

CondensNet: Enabling stable long-term climate simulations via hybrid deep learning models with adaptive physical constraints

18 February 2025
Xin Wang
Juntao Yang
Jeff Adie
Simon See
Kalli Furtado
Chen Chen
T. Arcomano
R. Maulik
G. Mengaldo
    AI4CE
ArXiv (abs)PDFHTML

Papers citing "CondensNet: Enabling stable long-term climate simulations via hybrid deep learning models with adaptive physical constraints"

5 / 5 papers shown
Title
ACE2: Accurately learning subseasonal to decadal atmospheric variability and forced responsesnpj Climate and Atmospheric Science (npj Clim. Atmos. Sci.), 2024
Oliver Watt-Meyer
Brian Henn
Jeremy McGibbon
Spencer K. Clark
Anna Kwa
W. Perkins
E. Wu
L. Harris
Christopher S. Bretherton
AI4Cl
316
41
0
18 Nov 2024
Neural General Circulation Models for Weather and Climate
Neural General Circulation Models for Weather and Climate
Dmitrii Kochkov
J. Yuval
I. Langmore
Peter C. Norgaard
Jamie A. Smith
...
Peter W. Battaglia
Alvaro Sanchez-Gonzalez
Matthew Willson
Michael P. Brenner
Stephan Hoyer
AI4ClAI4CE
305
275
0
13 Nov 2023
Sparsity in Deep Learning: Pruning and growth for efficient inference
  and training in neural networks
Sparsity in Deep Learning: Pruning and growth for efficient inference and training in neural networksJournal of machine learning research (JMLR), 2021
Torsten Hoefler
Dan Alistarh
Tal Ben-Nun
Nikoli Dryden
Alexandra Peste
MQ
478
833
0
31 Jan 2021
Achieving Conservation of Energy in Neural Network Emulators for Climate
  Modeling
Achieving Conservation of Energy in Neural Network Emulators for Climate Modeling
Tom Beucler
S. Rasp
Michael S. Pritchard
Pierre Gentine
93
87
0
15 Jun 2019
Deep learning to represent sub-grid processes in climate models
Deep learning to represent sub-grid processes in climate models
S. Rasp
Michael S. Pritchard
Pierre Gentine
AI4ClAI4CE
232
783
0
12 Jun 2018
1