Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2502.14010
Cited By
Which Attention Heads Matter for In-Context Learning?
19 February 2025
Kayo Yin
Jacob Steinhardt
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Which Attention Heads Matter for In-Context Learning?"
10 / 10 papers shown
Title
The Atlas of In-Context Learning: How Attention Heads Shape In-Context Retrieval Augmentation
Patrick Kahardipraja
Reduan Achtibat
Thomas Wiegand
Wojciech Samek
Sebastian Lapuschkin
86
0
0
21 May 2025
Mechanistic evaluation of Transformers and state space models
Aryaman Arora
Neil Rathi
Nikil Roashan Selvam
Róbert Csordás
Dan Jurafsky
Christopher Potts
63
0
0
21 May 2025
Do different prompting methods yield a common task representation in language models?
Guy Davidson
Todd M. Gureckis
Brenden M. Lake
Adina Williams
50
0
0
17 May 2025
Delta Attention: Fast and Accurate Sparse Attention Inference by Delta Correction
Jeffrey Willette
Heejun Lee
Sung Ju Hwang
52
0
0
16 May 2025
Illusion or Algorithm? Investigating Memorization, Emergence, and Symbolic Processing in In-Context Learning
Jingcheng Niu
Subhabrata Dutta
Ahmed Elshabrawy
Harish Tayyar Madabushi
Iryna Gurevych
86
1
0
16 May 2025
Understanding In-context Learning of Addition via Activation Subspaces
Xinyan Hu
Kayo Yin
Michael I. Jordan
Jacob Steinhardt
Lijie Chen
105
0
0
08 May 2025
Page Classification for Print Imaging Pipeline
Shaoyuan Xu
Cheng Lu
Mark Shaw
Peter Bauer
J. Allebach
VLM
61
0
0
03 Apr 2025
Repetitions are not all alike: distinct mechanisms sustain repetition in language models
Matéo Mahaut
Francesca Franzon
68
0
0
01 Apr 2025
Focus Directions Make Your Language Models Pay More Attention to Relevant Contexts
Youxiang Zhu
Ruochen Li
Danqing Wang
Daniel Haehn
Xiaohui Liang
LRM
89
2
0
30 Mar 2025
Strategy Coopetition Explains the Emergence and Transience of In-Context Learning
Aaditya K. Singh
Ted Moskovitz
Sara Dragutinovic
Felix Hill
Stephanie C. Y. Chan
Andrew Saxe
356
2
0
07 Mar 2025
1