ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2026 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2502.20966
  4. Cited By
Post-Hoc Uncertainty Quantification in Pre-Trained Neural Networks via Activation-Level Gaussian Processes

Post-Hoc Uncertainty Quantification in Pre-Trained Neural Networks via Activation-Level Gaussian Processes

28 February 2025
Richard Bergna
Stefan Depeweg
Sergio Calvo-Ordoñez
Jonathan Plenk
Alvaro Cartea
Jose Miguel Hernandez-Lobato
    UQCVAI4CE
ArXiv (abs)PDFHTML

Papers citing "Post-Hoc Uncertainty Quantification in Pre-Trained Neural Networks via Activation-Level Gaussian Processes"

1 / 1 papers shown
LVM-GP: Uncertainty-Aware PDE Solver via coupling latent variable model and Gaussian process
LVM-GP: Uncertainty-Aware PDE Solver via coupling latent variable model and Gaussian process
Xiaodong Feng
Ling Guo
Xiaoliang Wan
Hao Wu
Tao Zhou
Wenwen Zhou
AI4CE
233
1
0
30 Jul 2025
1
Page 1 of 1