A Human-In-The-Loop Simulation Framework for Evaluating Control Strategies in Gait Assistive Robots
As the global population ages, effective rehabilitation and mobility aids will become increasingly critical. Gait assistive robots are promising solutions, but designing adaptable controllers for various impairments poses a significant challenge. This paper presented a Human-In-The-Loop (HITL) simulation framework tailored specifically for gait assistive robots, addressing unique challenges posed by passive support systems. We incorporated a realistic physical human-robot interaction (pHRI) model to enable a quantitative evaluation of robot control strategies, highlighting the performance of a speed-adaptive controller compared to a conventional PID controller in maintaining compliance and reducing gait distortion. We assessed the accuracy of the simulated interactions against that of the real-world data and revealed discrepancies in the adaptation strategies taken by the human and their effect on the human's gait. This work underscored the potential of HITL simulation as a versatile tool for developing and fine-tuning personalized control policies for various users.
View on arXiv