ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2503.09532
  4. Cited By

SAEBench: A Comprehensive Benchmark for Sparse Autoencoders in Language Model Interpretability

12 March 2025
Adam Karvonen
Can Rager
Johnny Lin
Curt Tigges
Joseph Isaac Bloom
David Chanin
Yeu-Tong Lau
Eoin Farrell
Callum McDougall
Kola Ayonrinde
Matthew Wearden
Arthur Conmy
Samuel Marks
Neel Nanda
    MU
ArXivPDFHTML

Papers citing "SAEBench: A Comprehensive Benchmark for Sparse Autoencoders in Language Model Interpretability"

7 / 7 papers shown
Title
Evaluating Explanations: An Explanatory Virtues Framework for Mechanistic Interpretability -- The Strange Science Part I.ii
Evaluating Explanations: An Explanatory Virtues Framework for Mechanistic Interpretability -- The Strange Science Part I.ii
Kola Ayonrinde
Louis Jaburi
XAI
71
1
0
02 May 2025
MIB: A Mechanistic Interpretability Benchmark
MIB: A Mechanistic Interpretability Benchmark
Aaron Mueller
Atticus Geiger
Sarah Wiegreffe
Dana Arad
Iván Arcuschin
...
Alessandro Stolfo
Martin Tutek
Amir Zur
David Bau
Yonatan Belinkov
41
1
0
17 Apr 2025
SAEs $\textit{Can}$ Improve Unlearning: Dynamic Sparse Autoencoder Guardrails for Precision Unlearning in LLMs
SAEs Can\textit{Can}Can Improve Unlearning: Dynamic Sparse Autoencoder Guardrails for Precision Unlearning in LLMs
Aashiq Muhamed
Jacopo Bonato
Mona Diab
Virginia Smith
MU
58
0
0
11 Apr 2025
Evaluating and Designing Sparse Autoencoders by Approximating Quasi-Orthogonality
Evaluating and Designing Sparse Autoencoders by Approximating Quasi-Orthogonality
Sewoong Lee
Adam Davies
Marc E. Canby
J. Hockenmaier
LLMSV
65
0
0
31 Mar 2025
Revisiting End-To-End Sparse Autoencoder Training: A Short Finetune Is All You Need
Revisiting End-To-End Sparse Autoencoder Training: A Short Finetune Is All You Need
Adam Karvonen
34
0
0
21 Mar 2025
Learning Multi-Level Features with Matryoshka Sparse Autoencoders
Learning Multi-Level Features with Matryoshka Sparse Autoencoders
Bart Bussmann
Noa Nabeshima
Adam Karvonen
Neel Nanda
54
0
0
21 Mar 2025
Rethinking Evaluation of Sparse Autoencoders through the Representation of Polysemous Words
Rethinking Evaluation of Sparse Autoencoders through the Representation of Polysemous Words
Gouki Minegishi
Hiroki Furuta
Yusuke Iwasawa
Y. Matsuo
49
1
0
09 Jan 2025
1