ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2503.20563
  4. Cited By
TerraTorch: The Geospatial Foundation Models Toolkit

TerraTorch: The Geospatial Foundation Models Toolkit

26 March 2025
Carlos Gomes
Benedikt Blumenstiel
Joao Lucas de Sousa Almeida
Pedro Henrique de Oliveira
P. Fraccaro
Francesc Marti Escofet
Daniela Szwarcman
Naomi Simumba
Romeo Kienzler
Bianca Zadrozny
ArXiv (abs)PDFHTML

Papers citing "TerraTorch: The Geospatial Foundation Models Toolkit"

6 / 6 papers shown
Title
GEO-Bench-2: From Performance to Capability, Rethinking Evaluation in Geospatial AI
GEO-Bench-2: From Performance to Capability, Rethinking Evaluation in Geospatial AI
Naomi Simumba
Nils Lehmann
Paolo Fraccaro
Hamed Alemohammad
Geeth De Mel
...
Nicolas Longépé
Xiao Xiang Zhu
Hannah Kerner
Juan Bernabé-Moreno
Alexander Lacoste
ELMVLM
122
1
0
19 Nov 2025
Assessing the value of Geo-Foundational Models for Flood Inundation Mapping: Benchmarking models for Sentinel-1, Sentinel-2, and Planetscope for end-users
Assessing the value of Geo-Foundational Models for Flood Inundation Mapping: Benchmarking models for Sentinel-1, Sentinel-2, and Planetscope for end-users
Saurabh Kaushik
Lalit Maurya
Elizabeth Tellman
ZhiJie Zhang
104
0
0
03 Nov 2025
Habitat and Land Cover Change Detection in Alpine Protected Areas: A Comparison of AI Architectures
Habitat and Land Cover Change Detection in Alpine Protected Areas: A Comparison of AI Architectures
Harald Kristen
Daniel Kulmer
Manuela Hirschmugl
92
0
0
29 Oct 2025
Detection and Simulation of Urban Heat Islands Using a Fine-Tuned Geospatial Foundation Model
Detection and Simulation of Urban Heat Islands Using a Fine-Tuned Geospatial Foundation Model
David Kreismann
AI4CE
48
0
0
20 Sep 2025
CSMoE: An Efficient Remote Sensing Foundation Model with Soft Mixture-of-Experts
CSMoE: An Efficient Remote Sensing Foundation Model with Soft Mixture-of-Experts
Leonard Hackel
Tom Burgert
Begüm Demir
84
0
0
17 Sep 2025
Fine-tune Smarter, Not Harder: Parameter-Efficient Fine-Tuning for Geospatial Foundation Models
Fine-tune Smarter, Not Harder: Parameter-Efficient Fine-Tuning for Geospatial Foundation Models
Francesc Marti Escofet
Benedikt Blumenstiel
L. Scheibenreif
P. Fraccaro
Konrad Schindler
262
3
0
24 Apr 2025
1