ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2504.02971
  4. Cited By
QID: Efficient Query-Informed ViTs in Data-Scarce Regimes for OCR-free Visual Document Understanding
v1v2 (latest)

QID: Efficient Query-Informed ViTs in Data-Scarce Regimes for OCR-free Visual Document Understanding

3 April 2025
Binh M. Le
Shaoyuan Xu
Jinmiao Fu
Zhishen Huang
Moyan Li
Yanhui Guo
Hongdong Li
Sameera Ramasinghe
Bryan Wang
ArXiv (abs)PDFHTML

Papers citing "QID: Efficient Query-Informed ViTs in Data-Scarce Regimes for OCR-free Visual Document Understanding"

1 / 1 papers shown
Title
VisFocus: Prompt-Guided Vision Encoders for OCR-Free Dense Document Understanding
VisFocus: Prompt-Guided Vision Encoders for OCR-Free Dense Document Understanding
Ofir Abramovich
Niv Nayman
Sharon Fogel
I. Lavi
Ron Litman
Shahar Tsiper
Royee Tichauer
Srikar Appalaraju
Shai Mazor
R. Manmatha
VLM
294
6
0
17 Jul 2024
1