ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2504.03707
  4. Cited By
Towards Practical Emotion Recognition: An Unsupervised Source-Free Approach for EEG Domain Adaptation

Towards Practical Emotion Recognition: An Unsupervised Source-Free Approach for EEG Domain Adaptation

26 March 2025
Md. Niaz Imtiaz
N. Khan
ArXiv (abs)PDFHTML

Papers citing "Towards Practical Emotion Recognition: An Unsupervised Source-Free Approach for EEG Domain Adaptation"

2 / 2 papers shown
Title
LEL: A Novel Lipschitz Continuity-constrained Ensemble Learning Model for EEG-based Emotion Recognition
LEL: A Novel Lipschitz Continuity-constrained Ensemble Learning Model for EEG-based Emotion Recognition
Shengyu Gong
Yuchen Ren
Zijian Kang
Weiming Zeng
Hongjie Yan
W. Siok
Nizhuan Wang
Nizhuan Wang
224
1
0
12 Apr 2025
Model Adaptation: Unsupervised Domain Adaptation without Source Data
Model Adaptation: Unsupervised Domain Adaptation without Source DataComputer Vision and Pattern Recognition (CVPR), 2020
Rui Li
Qianfen Jiao
Wenming Cao
Hau-San Wong
Si Wu
OOD
622
553
0
26 Feb 2025
1