Domain-Conditioned Scene Graphs for State-Grounded Task Planning

Recent robotic task planning frameworks have integrated large multimodal models (LMMs) such as GPT-4V. To address grounding issues of such models, it has been suggested to split the pipeline into perceptional state grounding and subsequent state-based planning. As we show in this work, the state grounding ability of LMM-based approaches is still limited by weaknesses in granular, structured, domain-specific scene understanding. To address this shortcoming, we develop a more structured state grounding framework that features a domain-conditioned scene graph as its scene representation. We show that such representation is actionable in nature as it is directly mappable to a symbolic state in classical planning languages such as PDDL. We provide an instantiation of our state grounding framework where the domain-conditioned scene graph generation is implemented with a lightweight vision-language approach that classifies domain-specific predicates on top of domain-relevant object detections. Evaluated across three domains, our approach achieves significantly higher state estimation accuracy and task planning success rates compared to the previous LMM-based approaches.
View on arXiv@article{herzog2025_2504.06661, title={ Domain-Conditioned Scene Graphs for State-Grounded Task Planning }, author={ Jonas Herzog and Jiangpin Liu and Yue Wang }, journal={arXiv preprint arXiv:2504.06661}, year={ 2025 } }