ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2026 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2504.11416
  4. Cited By
Deep Learning-based Bathymetry Retrieval without In-situ Depths using Remote Sensing Imagery and SfM-MVS DSMs with Data Gaps

Deep Learning-based Bathymetry Retrieval without In-situ Depths using Remote Sensing Imagery and SfM-MVS DSMs with Data Gaps

Isprs Journal of Photogrammetry and Remote Sensing (ISPRS J. Photogramm. Remote Sens.), 2025
15 April 2025
P. Agrafiotis
Tim Siebert
ArXiv (abs)PDFHTML

Papers citing "Deep Learning-based Bathymetry Retrieval without In-situ Depths using Remote Sensing Imagery and SfM-MVS DSMs with Data Gaps"

2 / 2 papers shown
Seabed-Net: A multi-task network for joint bathymetry estimation and seabed classification from remote sensing imagery in shallow waters
Seabed-Net: A multi-task network for joint bathymetry estimation and seabed classification from remote sensing imagery in shallow waters
P. Agrafiotis
Tim Siebert
116
0
0
22 Oct 2025
Sea-Undistort: A Dataset for Through-Water Image Restoration in High Resolution Airborne Bathymetric Mapping
Sea-Undistort: A Dataset for Through-Water Image Restoration in High Resolution Airborne Bathymetric MappingIEEE Geoscience and Remote Sensing Letters (GRSL), 2025
Maximilian Kromer
P. Agrafiotis
Tim Siebert
99
0
0
11 Aug 2025
1