ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2505.07607
  4. Cited By
Multi-Objective Reinforcement Learning for Energy-Efficient Industrial Control

Multi-Objective Reinforcement Learning for Energy-Efficient Industrial Control

12 May 2025
Georg Schafer
Raphael Seliger
Jakob Rehrl
Stefan Huber
Simon Hirlaender
    AI4CE
ArXiv (abs)PDFHTML

Papers citing "Multi-Objective Reinforcement Learning for Energy-Efficient Industrial Control"

1 / 1 papers shown
Title
The Crucial Role of Problem Formulation in Real-World Reinforcement Learning
The Crucial Role of Problem Formulation in Real-World Reinforcement LearningIndustrial Cyber-Physical Systems (ICPS), 2025
Georg Schafer
Tatjana Krau
Jakob Rehrl
Stefan Huber
Simon Hirlaender
OffRL
140
1
0
26 Mar 2025
1