ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2505.12919
  4. Cited By
RGNMR: A Gauss-Newton method for robust matrix completion with theoretical guarantees

RGNMR: A Gauss-Newton method for robust matrix completion with theoretical guarantees

19 May 2025
Eilon Vaknin Laufer
Boaz Nadler
ArXiv (abs)PDFHTML

Papers citing "RGNMR: A Gauss-Newton method for robust matrix completion with theoretical guarantees"

1 / 1 papers shown
Title
Preconditioned Gradient Descent for Over-Parameterized Nonconvex Matrix Factorization
Preconditioned Gradient Descent for Over-Parameterized Nonconvex Matrix Factorization
G. Zhang
Salar Fattahi
Richard Y. Zhang
225
39
0
13 Apr 2025
1