ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2505.14139
  4. Cited By
FlowQ: Energy-Guided Flow Policies for Offline Reinforcement Learning

FlowQ: Energy-Guided Flow Policies for Offline Reinforcement Learning

20 May 2025
Marvin Alles
Nutan Chen
Patrick van der Smagt
Botond Cseke
ArXiv (abs)PDFHTML

Papers citing "FlowQ: Energy-Guided Flow Policies for Offline Reinforcement Learning"

3 / 3 papers shown
Title
Multi-agent Coordination via Flow Matching
Multi-agent Coordination via Flow Matching
Dongsu Lee
Daehee Lee
Amy Zhang
64
0
0
07 Nov 2025
Constrained Latent Action Policies for Model-Based Offline Reinforcement Learning
Constrained Latent Action Policies for Model-Based Offline Reinforcement LearningNeural Information Processing Systems (NeurIPS), 2024
Marvin Alles
Philip Becker-Ehmck
Patrick van der Smagt
Maximilian Karl
OffRL
287
3
0
07 Nov 2024
Diffusion Actor-Critic: Formulating Constrained Policy Iteration as Diffusion Noise Regression for Offline Reinforcement Learning
Diffusion Actor-Critic: Formulating Constrained Policy Iteration as Diffusion Noise Regression for Offline Reinforcement Learning
Linjiajie Fang
Ruoxue Liu
Jing Zhang
Wenjia Wang
Bing-Yi Jing
OffRL
371
13
0
31 May 2024
1