ResearchTrend.AI
  • Papers
  • Communities
  • Organizations
  • Events
  • Blog
  • Pricing
  • Feedback
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2505.14252
  4. Cited By
Hybrid Adaptive Modeling in Process Monitoring: Leveraging Sequence Encoders and Physics-Informed Neural Networks
v1v2 (latest)

Hybrid Adaptive Modeling in Process Monitoring: Leveraging Sequence Encoders and Physics-Informed Neural Networks

20 May 2025
Mouad Elaarabi
Domenico Borzacchiello
Philippe Le Bot
Nathan Lauzeral
Sebastien Comas-Cardona
    PINNAI4CE
ArXiv (abs)PDFHTML

Papers citing "Hybrid Adaptive Modeling in Process Monitoring: Leveraging Sequence Encoders and Physics-Informed Neural Networks"

1 / 1 papers shown
Title
Adaptive parameters identification for nonlinear dynamics using deep permutation invariant networks
Adaptive parameters identification for nonlinear dynamics using deep permutation invariant networks
Mouad Elaarabi
Domenico Borzacchiello
Yves Le Guennec
Philippe Le Bot
Sebastien Comas-Cardona
199
3
0
20 Jan 2025
1