ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2505.14343
  4. Cited By
Mixing times of data-augmentation Gibbs samplers for high-dimensional probit regression

Mixing times of data-augmentation Gibbs samplers for high-dimensional probit regression

20 May 2025
Filippo Ascolani
T. Rigon
ArXiv (abs)PDFHTML

Papers citing "Mixing times of data-augmentation Gibbs samplers for high-dimensional probit regression"

15 / 15 papers shown
Title
Spectral gap of Metropolis-within-Gibbs under log-concavity
Spectral gap of Metropolis-within-Gibbs under log-concavity
Cecilia Secchi
Giacomo Zanella
65
0
0
30 Sep 2025
Linear-cost unbiased posterior estimates for crossed effects and matrix
  factorization models via couplings
Linear-cost unbiased posterior estimates for crossed effects and matrix factorization models via couplings
Paolo Maria Ceriani
Giacomo Zanella
99
3
0
11 Oct 2024
Entropy contraction of the Gibbs sampler under log-concavity
Entropy contraction of the Gibbs sampler under log-concavity
Filippo Ascolani
Hugo Lavenant
Giacomo Zanella
246
13
0
01 Oct 2024
Partially factorized variational inference for high-dimensional mixed
  models
Partially factorized variational inference for high-dimensional mixed models
Max Goplerud
O. Papaspiliopoulos
Giacomo Zanella
100
11
0
20 Dec 2023
Faster high-accuracy log-concave sampling via algorithmic warm starts
Faster high-accuracy log-concave sampling via algorithmic warm startsIEEE Annual Symposium on Foundations of Computer Science (FOCS), 2023
Jason M. Altschuler
Sinho Chewi
315
44
0
20 Feb 2023
Bayesian conjugacy in probit, tobit, multinomial probit and extensions:
  A review and new results
Bayesian conjugacy in probit, tobit, multinomial probit and extensions: A review and new resultsJournal of the American Statistical Association (JASA), 2022
Niccolò Anceschi
A. Fasano
Daniele Durante
T. Rigon
252
23
0
16 Jun 2022
Minimax Mixing Time of the Metropolis-Adjusted Langevin Algorithm for
  Log-Concave Sampling
Minimax Mixing Time of the Metropolis-Adjusted Langevin Algorithm for Log-Concave SamplingJournal of machine learning research (JMLR), 2021
Keru Wu
S. Schmidler
Yuansi Chen
319
60
0
27 Sep 2021
Ultimate Pólya Gamma Samplers -- Efficient MCMC for possibly
  imbalanced binary and categorical data
Ultimate Pólya Gamma Samplers -- Efficient MCMC for possibly imbalanced binary and categorical dataJournal of the American Statistical Association (JASA), 2020
Gregor Zens
Sylvia Fruhwirth-Schnatter
Helga Wagner
SyDa
406
16
0
13 Nov 2020
Scalable and Accurate Variational Bayes for High-Dimensional Binary
  Regression Models
Scalable and Accurate Variational Bayes for High-Dimensional Binary Regression Models
A. Fasano
Daniele Durante
T. Rigon
229
34
0
15 Nov 2019
Estimating Convergence of Markov chains with L-Lag Couplings
Estimating Convergence of Markov chains with L-Lag CouplingsNeural Information Processing Systems (NeurIPS), 2019
N. Biswas
Pierre E. Jacob
Paul Vanetti
176
52
0
23 May 2019
Conjugate Bayes for probit regression via unified skew-normal
  distributions
Conjugate Bayes for probit regression via unified skew-normal distributions
Daniele Durante
183
63
0
26 Feb 2018
Convergence complexity analysis of Albert and Chib's algorithm for
  Bayesian probit regression
Convergence complexity analysis of Albert and Chib's algorithm for Bayesian probit regressionAnnals of Statistics (Ann. Stat.), 2017
Qian Qin
J. Hobert
155
37
0
24 Dec 2017
Unbiased Markov chain Monte Carlo with couplings
Unbiased Markov chain Monte Carlo with couplings
Pierre E. Jacob
J. O'Leary
Yves F. Atchadé
396
74
0
11 Aug 2017
The Normal Law Under Linear Restrictions: Simulation and Estimation via
  Minimax Tilting
The Normal Law Under Linear Restrictions: Simulation and Estimation via Minimax Tilting
Z. Botev
120
256
0
14 Mar 2016
Leave Pima Indians alone: binary regression as a benchmark for Bayesian
  computation
Leave Pima Indians alone: binary regression as a benchmark for Bayesian computation
Nicolas Chopin
James Ridgway
182
78
0
29 Jun 2015
1