ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2026 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2505.17013
  4. Cited By
When Are Concepts Erased From Diffusion Models?
v1v2v3v4v5 (latest)

When Are Concepts Erased From Diffusion Models?

22 May 2025
Kevin Lu
Nicky Kriplani
Rohit Gandikota
Minh Pham
David Bau
Chinmay Hegde
Niv Cohen
ArXiv (abs)PDFHTMLGithub (4★)

Papers citing "When Are Concepts Erased From Diffusion Models?"

28 / 28 papers shown
SAEmnesia: Erasing Concepts in Diffusion Models with Supervised Sparse Autoencoders
SAEmnesia: Erasing Concepts in Diffusion Models with Supervised Sparse Autoencoders
Enrico Cassano
Riccardo Renzulli
Marco Nurisso
Mirko Zaffaroni
Alan Perotti
Marco Grangetto
204
0
0
23 Sep 2025
Erased or Dormant? Rethinking Concept Erasure Through Reversibility
Erased or Dormant? Rethinking Concept Erasure Through Reversibility
Ping Liu
Fangqiu Yi
KELM
427
1
0
22 May 2025
Distilling Diversity and Control in Diffusion Models
Distilling Diversity and Control in Diffusion Models
Rohit Gandikota
David Bau
538
9
0
13 Mar 2025
Robust Concept Erasure Using Task Vectors
Robust Concept Erasure Using Task Vectors
Minh Pham
Kelly O. Marshall
Chinmay Hegde
Niv Cohen
457
25
0
21 Feb 2025
Memories of Forgotten Concepts
Memories of Forgotten ConceptsComputer Vision and Pattern Recognition (CVPR), 2024
M. Rusanovsky
Shimon Malnick
Amir Jevnisek
Ohad Fried
S. Avidan
DiffM
307
4
0
01 Dec 2024
One-Step is Enough: Sparse Autoencoders for Text-to-Image Diffusion Models
One-Step is Enough: Sparse Autoencoders for Text-to-Image Diffusion Models
Viacheslav Surkov
Chris Wendler
Antonio Mari
Mikhail Terekhov
Justin Deschenaux
Robert West
Çağlar Gülçehre
David Bau
VLM
569
13
0
28 Oct 2024
SAFREE: Training-Free and Adaptive Guard for Safe Text-to-Image And Video Generation
SAFREE: Training-Free and Adaptive Guard for Safe Text-to-Image And Video GenerationInternational Conference on Learning Representations (ICLR), 2024
Jaehong Yoon
Shoubin Yu
Vaidehi Patil
Huaxiu Yao
Joey Tianyi Zhou
680
58
0
16 Oct 2024
Unlearning or Concealment? A Critical Analysis and Evaluation Metrics
  for Unlearning in Diffusion Models
Unlearning or Concealment? A Critical Analysis and Evaluation Metrics for Unlearning in Diffusion Models
Aakash Sen Sharma
Niladri Sarkar
Vikram S Chundawat
Ankur Mali
Murari Mandal
DiffMMU
345
9
0
09 Sep 2024
Reliable and Efficient Concept Erasure of Text-to-Image Diffusion Models
Reliable and Efficient Concept Erasure of Text-to-Image Diffusion Models
Chao Gong
Kai-xiang Chen
Zhipeng Wei
Yue Yu
Yulong Jiang
DiffM
323
72
0
17 Jul 2024
Interpreting the Weight Space of Customized Diffusion Models
Interpreting the Weight Space of Customized Diffusion Models
Amil Dravid
Yossi Gandelsman
Kuan-Chieh Wang
Rameen Abdal
Gordon Wetzstein
Alexei A. Efros
Kfir Aberman
428
20
0
13 Jun 2024
Diffusion Lens: Interpreting Text Encoders in Text-to-Image Pipelines
Diffusion Lens: Interpreting Text Encoders in Text-to-Image PipelinesAnnual Meeting of the Association for Computational Linguistics (ACL), 2024
Michael Toker
Hadas Orgad
Mor Ventura
Dana Arad
Yonatan Belinkov
DiffM
284
20
0
09 Mar 2024
Concept Sliders: LoRA Adaptors for Precise Control in Diffusion Models
Concept Sliders: LoRA Adaptors for Precise Control in Diffusion ModelsEuropean Conference on Computer Vision (ECCV), 2023
Rohit Gandikota
Joanna Materzyñska
Tingrui Zhou
Antonio Torralba
David Bau
DiffM
441
120
0
20 Nov 2023
To Generate or Not? Safety-Driven Unlearned Diffusion Models Are Still
  Easy To Generate Unsafe Images ... For Now
To Generate or Not? Safety-Driven Unlearned Diffusion Models Are Still Easy To Generate Unsafe Images ... For NowEuropean Conference on Computer Vision (ECCV), 2023
Yimeng Zhang
Jinghan Jia
Xin Chen
Chenyi Zi
Yihua Zhang
Jiancheng Liu
Ke Ding
Sijia Liu
DiffM
652
168
0
18 Oct 2023
Ring-A-Bell! How Reliable are Concept Removal Methods for Diffusion
  Models?
Ring-A-Bell! How Reliable are Concept Removal Methods for Diffusion Models?
Yu-Lin Tsai
Chia-Yi Hsu
Chulin Xie
Chih-Hsun Lin
Jia-You Chen
Yue Liu
Pin-Yu Chen
Chia-Mu Yu
Chun-ying Huang
DiffM
310
164
0
16 Oct 2023
How Much Training Data is Memorized in Overparameterized Autoencoders?
  An Inverse Problem Perspective on Memorization Evaluation
How Much Training Data is Memorized in Overparameterized Autoencoders? An Inverse Problem Perspective on Memorization Evaluation
Koren Abitbul
Yehuda Dar
TDI
257
3
0
04 Oct 2023
Prompting4Debugging: Red-Teaming Text-to-Image Diffusion Models by Finding Problematic Prompts
Prompting4Debugging: Red-Teaming Text-to-Image Diffusion Models by Finding Problematic PromptsInternational Conference on Machine Learning (ICML), 2023
Zhi-Yi Chin
Chieh-Ming Jiang
Ching-Chun Huang
Pin-Yu Chen
Wei-Chen Chiu
DiffM
371
123
0
12 Sep 2023
Unified Concept Editing in Diffusion Models
Unified Concept Editing in Diffusion ModelsIEEE Workshop/Winter Conference on Applications of Computer Vision (WACV), 2023
Rohit Gandikota
Hadas Orgad
Yonatan Belinkov
Joanna Materzyñska
David Bau
DiffM
380
303
0
25 Aug 2023
Circumventing Concept Erasure Methods For Text-to-Image Generative
  Models
Circumventing Concept Erasure Methods For Text-to-Image Generative ModelsInternational Conference on Learning Representations (ICLR), 2023
Minh Pham
Kelly O. Marshall
Niv Cohen
Govind Mittal
Chinmay Hegde
DiffM
247
68
0
03 Aug 2023
Selective Amnesia: A Continual Learning Approach to Forgetting in Deep
  Generative Models
Selective Amnesia: A Continual Learning Approach to Forgetting in Deep Generative ModelsNeural Information Processing Systems (NeurIPS), 2023
Alvin Heng
Harold Soh
VLMKELMDiffM
330
165
0
17 May 2023
Forget-Me-Not: Learning to Forget in Text-to-Image Diffusion Models
Forget-Me-Not: Learning to Forget in Text-to-Image Diffusion Models
Eric Zhang
Kai Wang
Xingqian Xu
Zinan Lin
Humphrey Shi
DiffM
351
261
0
30 Mar 2023
Erasing Concepts from Diffusion Models
Erasing Concepts from Diffusion ModelsIEEE International Conference on Computer Vision (ICCV), 2023
Rohit Gandikota
Joanna Materzyñska
Jaden Fiotto-Kaufman
David Bau
DiffM
507
444
0
13 Mar 2023
Cones: Concept Neurons in Diffusion Models for Customized Generation
Cones: Concept Neurons in Diffusion Models for Customized GenerationInternational Conference on Machine Learning (ICML), 2023
Zhiheng Liu
Ruili Feng
Kai Zhu
Yifei Zhang
Kecheng Zheng
Yu Liu
Deli Zhao
Jingren Zhou
Yang Cao
DiffM
303
152
0
09 Mar 2023
Editing Models with Task Arithmetic
Editing Models with Task ArithmeticInternational Conference on Learning Representations (ICLR), 2022
Gabriel Ilharco
Marco Tulio Ribeiro
Mitchell Wortsman
Suchin Gururangan
Ludwig Schmidt
Hannaneh Hajishirzi
Ali Farhadi
KELMMoMeMU
1.3K
761
0
08 Dec 2022
Safe Latent Diffusion: Mitigating Inappropriate Degeneration in
  Diffusion Models
Safe Latent Diffusion: Mitigating Inappropriate Degeneration in Diffusion ModelsComputer Vision and Pattern Recognition (CVPR), 2022
P. Schramowski
Manuel Brack
Bjorn Deiseroth
Kristian Kersting
511
454
0
09 Nov 2022
An Image is Worth One Word: Personalizing Text-to-Image Generation using
  Textual Inversion
An Image is Worth One Word: Personalizing Text-to-Image Generation using Textual InversionInternational Conference on Learning Representations (ICLR), 2022
Rinon Gal
Yuval Alaluf
Yuval Atzmon
Or Patashnik
Amit H. Bermano
Gal Chechik
Daniel Cohen-Or
613
2,470
0
02 Aug 2022
High-Resolution Image Synthesis with Latent Diffusion Models
High-Resolution Image Synthesis with Latent Diffusion ModelsComputer Vision and Pattern Recognition (CVPR), 2021
Robin Rombach
A. Blattmann
Dominik Lorenz
Patrick Esser
Bjorn Ommer
DiffM
3.1K
21,434
0
20 Dec 2021
CLIPScore: A Reference-free Evaluation Metric for Image Captioning
CLIPScore: A Reference-free Evaluation Metric for Image CaptioningConference on Empirical Methods in Natural Language Processing (EMNLP), 2021
Jack Hessel
Ari Holtzman
Maxwell Forbes
Ronan Le Bras
Yejin Choi
CLIP
981
2,298
0
18 Apr 2021
Score-Based Generative Modeling through Stochastic Differential
  Equations
Score-Based Generative Modeling through Stochastic Differential EquationsInternational Conference on Learning Representations (ICLR), 2020
Yang Song
Jascha Narain Sohl-Dickstein
Diederik P. Kingma
Abhishek Kumar
Stefano Ermon
Ben Poole
DiffMSyDa
2.2K
8,952
0
26 Nov 2020
1
Page 1 of 1