ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2505.17799
  4. Cited By
A Coreset Selection of Coreset Selection Literature: Introduction and Recent Advances

A Coreset Selection of Coreset Selection Literature: Introduction and Recent Advances

23 May 2025
Brian B. Moser
Arundhati S. Shanbhag
Stanislav Frolov
Federico Raue
Joachim Folz
Andreas Dengel
ArXiv (abs)PDFHTML

Papers citing "A Coreset Selection of Coreset Selection Literature: Introduction and Recent Advances"

50 / 109 papers shown
Title
VideoCompressa: Data-Efficient Video Understanding via Joint Temporal Compression and Spatial Reconstruction
VideoCompressa: Data-Efficient Video Understanding via Joint Temporal Compression and Spatial Reconstruction
Shaobo Wang
Tianle Niu
Runkang Yang
Deshan Liu
Xu He
Zichen Wen
Conghui He
Xuming Hu
Linfeng Zhang
VGen
154
0
0
24 Nov 2025
Adaptive Data Selection for Multi-Layer Perceptron Training: A Sub-linear Value-Driven Method
Adaptive Data Selection for Multi-Layer Perceptron Training: A Sub-linear Value-Driven Method
Xiyang Zhang
Chen Liang
Haoxuan Qiu
Hongzhi Wang
88
0
0
24 Oct 2025
SimBA: Simplifying Benchmark Analysis Using Performance Matrices Alone
SimBA: Simplifying Benchmark Analysis Using Performance Matrices Alone
Nishant Subramani
Alfredo Gomez
Mona T. Diab
84
0
0
20 Oct 2025
SubZeroCore: A Submodular Approach with Zero Training for Coreset Selection
SubZeroCore: A Submodular Approach with Zero Training for Coreset Selection
Brian B. Moser
Tobias Christian Nauen
Arundhati S. Shanbhag
Federico Raue
Stanislav Frolov
Joachim Folz
Andreas Dengel
116
0
0
26 Sep 2025
UPCORE: Utility-Preserving Coreset Selection for Balanced Unlearning
UPCORE: Utility-Preserving Coreset Selection for Balanced Unlearning
Vaidehi Patil
Elias Stengel-Eskin
Joey Tianyi Zhou
MUCLL
309
5
0
20 Feb 2025
Lightweight Dataset Pruning without Full Training via Example Difficulty and Prediction Uncertainty
Lightweight Dataset Pruning without Full Training via Example Difficulty and Prediction Uncertainty
Yeseul Cho
Baekrok Shin
Changmin Kang
Chulhee Yun
218
3
0
10 Feb 2025
Rethinking Large-scale Dataset Compression: Shifting Focus From Labels to Images
Lingao Xiao
Songhua Liu
Yang He
Xinchao Wang
DD
150
5
0
10 Feb 2025
Coreset-Based Task Selection for Sample-Efficient Meta-Reinforcement Learning
Coreset-Based Task Selection for Sample-Efficient Meta-Reinforcement Learning
Donglin Zhan
Leonardo F. Toso
James Anderson
443
3
0
04 Feb 2025
BloomCoreset: Fast Coreset Sampling using Bloom Filters for Fine-Grained
  Self-Supervised Learning
BloomCoreset: Fast Coreset Sampling using Bloom Filters for Fine-Grained Self-Supervised Learning
Prajwal Singh
Gautam Vashishtha
Indra Deep Mastan
Shanmuganathan Raman
168
1
0
22 Dec 2024
Zero-Shot Coreset Selection via Iterative Subspace Sampling
Zero-Shot Coreset Selection via Iterative Subspace Sampling
Brent A. Griffin
Jacob Marks
Jason J. Corso
VLM
273
7
0
22 Nov 2024
Distill the Best, Ignore the Rest: Improving Dataset Distillation with
  Loss-Value-Based Pruning
Distill the Best, Ignore the Rest: Improving Dataset Distillation with Loss-Value-Based Pruning
Brian B. Moser
Federico Raue
Tobias Christian Nauen
Stanislav Frolov
Andreas Dengel
DD
191
4
0
18 Nov 2024
FedAD-Bench: A Unified Benchmark for Federated Unsupervised Anomaly
  Detection in Tabular Data
FedAD-Bench: A Unified Benchmark for Federated Unsupervised Anomaly Detection in Tabular Data
Ahmed Anwar
Brian B. Moser
Dayananda Herurkar
Federico Raue
Vinit Hegiste
T. Legler
Andreas Dengel
FedML
155
4
0
08 Aug 2024
In2Core: Leveraging Influence Functions for Coreset Selection in
  Instruction Finetuning of Large Language Models
In2Core: Leveraging Influence Functions for Coreset Selection in Instruction Finetuning of Large Language ModelsConference on Empirical Methods in Natural Language Processing (EMNLP), 2024
Ayrton San Joaquin
Bin Wang
Zhengyuan Liu
Nicholas Asher
Brian Lim
Philippe Muller
Nancy Chen
221
7
0
07 Aug 2024
D$^4$M: Dataset Distillation via Disentangled Diffusion Model
D4^44M: Dataset Distillation via Disentangled Diffusion Model
Duo Su
Junjie Hou
Weizhi Gao
Yingjie Tian
Bowen Tang
DD
233
48
0
21 Jul 2024
Code Less, Align More: Efficient LLM Fine-tuning for Code Generation
  with Data Pruning
Code Less, Align More: Efficient LLM Fine-tuning for Code Generation with Data Pruning
Yun-Da Tsai
Mingjie Liu
Haoxing Ren
SyDa
237
23
0
06 Jul 2024
Coreset Selection for Object Detection
Coreset Selection for Object Detection
Hojun Lee
Suyoung Kim
Junhoo Lee
Jaeyoung Yoo
Nojun Kwak
183
15
0
14 Apr 2024
A Study in Dataset Pruning for Image Super-Resolution
A Study in Dataset Pruning for Image Super-Resolution
Brian B. Moser
Federico Raue
Andreas Dengel
SupR
262
11
0
25 Mar 2024
Unlocking Dataset Distillation with Diffusion Models
Unlocking Dataset Distillation with Diffusion Models
Brian B. Moser
Federico Raue
Sebastián M. Palacio
Stanislav Frolov
Andreas Dengel
DD
494
22
0
06 Mar 2024
Gradient Coreset for Federated Learning
Gradient Coreset for Federated LearningIEEE Workshop/Winter Conference on Applications of Computer Vision (WACV), 2024
D. Sivasubramanian
Lokesh Nagalapatti
Rishabh K. Iyer
Ganesh Ramakrishnan
FedML
152
7
0
13 Jan 2024
Towards Effective Multiple-in-One Image Restoration: A Sequential and
  Prompt Learning Strategy
Towards Effective Multiple-in-One Image Restoration: A Sequential and Prompt Learning Strategy
Xiangtao Kong
Chao Dong
Lei Zhang
CLL
253
40
0
07 Jan 2024
Refined Coreset Selection: Towards Minimal Coreset Size under Model
  Performance Constraints
Refined Coreset Selection: Towards Minimal Coreset Size under Model Performance ConstraintsInternational Conference on Machine Learning (ICML), 2023
Xiaobo Xia
Jiale Liu
Shaokun Zhang
Qingyun Wu
Hongxin Wei
Tongliang Liu
222
15
0
15 Nov 2023
LLMaAA: Making Large Language Models as Active Annotators
LLMaAA: Making Large Language Models as Active AnnotatorsConference on Empirical Methods in Natural Language Processing (EMNLP), 2023
Ruoyu Zhang
Yanzeng Li
Yongliang Ma
Ming Zhou
Lei Zou
293
105
0
30 Oct 2023
You Only Condense Once: Two Rules for Pruning Condensed Datasets
You Only Condense Once: Two Rules for Pruning Condensed DatasetsNeural Information Processing Systems (NeurIPS), 2023
Yang He
Lingao Xiao
Qiufeng Wang
183
23
0
21 Oct 2023
ASP: Automatic Selection of Proxy dataset for efficient AutoML
ASP: Automatic Selection of Proxy dataset for efficient AutoML
Peng Yao
Chao Liao
Jiyuan Jia
Jianchao Tan
Bin Chen
Chengru Song
Chen Zhang
153
5
0
17 Oct 2023
Coreset selection can accelerate quantum machine learning models with
  provable generalization
Coreset selection can accelerate quantum machine learning models with provable generalizationPhysical Review Applied (Phys. Rev. Appl.), 2023
Yiming Huang
Huiyuan Wang
Yuxuan Du
Xiao Yuan
215
6
0
19 Sep 2023
Dynamic Attention-Guided Diffusion for Image Super-Resolution
Dynamic Attention-Guided Diffusion for Image Super-ResolutionIEEE Workshop/Winter Conference on Applications of Computer Vision (WACV), 2023
Brian B. Moser
Stanislav Frolov
Federico Raue
Sebastián M. Palacio
Andreas Dengel
DiffM
294
9
0
15 Aug 2023
Squeeze, Recover and Relabel: Dataset Condensation at ImageNet Scale
  From A New Perspective
Squeeze, Recover and Relabel: Dataset Condensation at ImageNet Scale From A New PerspectiveNeural Information Processing Systems (NeurIPS), 2023
Zeyuan Yin
Eric P. Xing
Zhiqiang Shen
DD
327
116
0
22 Jun 2023
NLU on Data Diets: Dynamic Data Subset Selection for NLP Classification
  Tasks
NLU on Data Diets: Dynamic Data Subset Selection for NLP Classification Tasks
Jean-Michel Attendu
Jean-Philippe Corbeil
180
19
0
05 Jun 2023
Near-Optimal Quantum Coreset Construction Algorithms for Clustering
Near-Optimal Quantum Coreset Construction Algorithms for ClusteringInternational Conference on Machine Learning (ICML), 2023
Yecheng Xue
Xiaoyu Chen
Tongyang Li
S. Jiang
212
5
0
05 Jun 2023
Towards Sustainable Learning: Coresets for Data-efficient Deep Learning
Towards Sustainable Learning: Coresets for Data-efficient Deep LearningInternational Conference on Machine Learning (ICML), 2023
Yu Yang
Hao Kang
Baharan Mirzasoleiman
205
48
0
02 Jun 2023
Map-based Experience Replay: A Memory-Efficient Solution to Catastrophic
  Forgetting in Reinforcement Learning
Map-based Experience Replay: A Memory-Efficient Solution to Catastrophic Forgetting in Reinforcement LearningFrontiers in Neurorobotics (FN), 2023
Muhammad Burhan Hafez
Tilman Immisch
Tom Weber
S. Wermter
CLL
188
11
0
03 May 2023
Generalizing Dataset Distillation via Deep Generative Prior
Generalizing Dataset Distillation via Deep Generative PriorComputer Vision and Pattern Recognition (CVPR), 2023
George Cazenavette
Tongzhou Wang
Antonio Torralba
Alexei A. Efros
Jun-Yan Zhu
DD
315
130
0
02 May 2023
Exploring the Limits of Deep Image Clustering using Pretrained Models
Exploring the Limits of Deep Image Clustering using Pretrained ModelsBritish Machine Vision Conference (BMVC), 2023
Tim Kaiser
Félix D. P. Michels
Hamza Kalisch
M. Kollmann
VLM
226
40
0
31 Mar 2023
Coreset Sampling from Open-Set for Fine-Grained Self-Supervised Learning
Coreset Sampling from Open-Set for Fine-Grained Self-Supervised LearningComputer Vision and Pattern Recognition (CVPR), 2023
Sungnyun Kim
Sangmin Bae
Se-Young Yun
301
14
0
20 Mar 2023
Data-Efficient Training of CNNs and Transformers with Coresets: A
  Stability Perspective
Data-Efficient Training of CNNs and Transformers with Coresets: A Stability Perspective
Animesh Gupta
Irtiza Hassan
Dilip K. Prasad
D. K. Gupta
182
9
0
03 Mar 2023
Selective experience replay compression using coresets for lifelong deep
  reinforcement learning in medical imaging
Selective experience replay compression using coresets for lifelong deep reinforcement learning in medical imagingInternational Conference on Medical Imaging with Deep Learning (MIDL), 2023
Guangyao Zheng
Samson Zhou
Vladimir Braverman
M. Jacobs
V. Parekh
OffRLCLL
341
7
0
22 Feb 2023
A Comprehensive Survey of Continual Learning: Theory, Method and
  Application
A Comprehensive Survey of Continual Learning: Theory, Method and ApplicationIEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 2023
Liyuan Wang
Xingxing Zhang
Hang Su
Jun Zhu
KELMCLL
689
1,022
0
31 Jan 2023
Probabilistic Bilevel Coreset Selection
Probabilistic Bilevel Coreset SelectionInternational Conference on Machine Learning (ICML), 2023
Xiao Zhou
Renjie Pi
Weizhong Zhang
Yong Lin
Tong Zhang
NoLa
254
35
0
24 Jan 2023
Reproducible scaling laws for contrastive language-image learning
Reproducible scaling laws for contrastive language-image learningComputer Vision and Pattern Recognition (CVPR), 2022
Mehdi Cherti
Romain Beaumont
Ross Wightman
Mitchell Wortsman
Gabriel Ilharco
Cade Gordon
Christoph Schuhmann
Ludwig Schmidt
J. Jitsev
VLMCLIP
349
1,110
0
14 Dec 2022
Coverage-centric Coreset Selection for High Pruning Rates
Coverage-centric Coreset Selection for High Pruning RatesInternational Conference on Learning Representations (ICLR), 2022
Haizhong Zheng
Rui Liu
Fan Lai
Atul Prakash
228
84
0
28 Oct 2022
Scaling Laws for Reward Model Overoptimization
Scaling Laws for Reward Model OveroptimizationInternational Conference on Machine Learning (ICML), 2022
Leo Gao
John Schulman
Jacob Hilton
ALM
277
745
0
19 Oct 2022
Deep Clustering: A Comprehensive Survey
Deep Clustering: A Comprehensive SurveyIEEE Transactions on Neural Networks and Learning Systems (TNNLS), 2022
Yazhou Ren
Jingyu Pu
Zhimeng Yang
Jie Xu
Guofeng Li
X. Pu
Philip S. Yu
Lifang He
HAI
230
171
0
09 Oct 2022
Adaptive Ranking-based Sample Selection for Weakly Supervised
  Class-imbalanced Text Classification
Adaptive Ranking-based Sample Selection for Weakly Supervised Class-imbalanced Text ClassificationConference on Empirical Methods in Natural Language Processing (EMNLP), 2022
Linxin Song
Jieyu Zhang
Tianxiang Yang
M. Goto
199
12
0
06 Oct 2022
Fed-CBS: A Heterogeneity-Aware Client Sampling Mechanism for Federated
  Learning via Class-Imbalance Reduction
Fed-CBS: A Heterogeneity-Aware Client Sampling Mechanism for Federated Learning via Class-Imbalance ReductionInternational Conference on Machine Learning (ICML), 2022
Jianyi Zhang
Ang Li
Minxue Tang
Jingwei Sun
Xiang Chen
Fan Zhang
Chang Chen
Yiran Chen
Xue Yang
FedML
122
69
0
30 Sep 2022
Beyond neural scaling laws: beating power law scaling via data pruning
Beyond neural scaling laws: beating power law scaling via data pruningNeural Information Processing Systems (NeurIPS), 2022
Ben Sorscher
Robert Geirhos
Shashank Shekhar
Surya Ganguli
Ari S. Morcos
1.0K
536
0
29 Jun 2022
Performance analysis of coreset selection for quantum implementation of
  K-Means clustering algorithm
Performance analysis of coreset selection for quantum implementation of K-Means clustering algorithm
Fanzhe Qu
S. Erfani
Muhammad Usman
99
6
0
16 Jun 2022
A Survey on Computationally Efficient Neural Architecture Search
A Survey on Computationally Efficient Neural Architecture Search
Shiqing Liu
Haoyu Zhang
Yaochu Jin
291
53
0
03 Jun 2022
DeepCore: A Comprehensive Library for Coreset Selection in Deep Learning
DeepCore: A Comprehensive Library for Coreset Selection in Deep LearningInternational Conference on Database and Expert Systems Applications (DEXA), 2022
Chengcheng Guo
B. Zhao
Yanbing Bai
OOD
333
183
0
18 Apr 2022
Hierarchical Text-Conditional Image Generation with CLIP Latents
Hierarchical Text-Conditional Image Generation with CLIP Latents
Aditya A. Ramesh
Prafulla Dhariwal
Alex Nichol
Casey Chu
Mark Chen
VLMDiffM
935
8,126
0
13 Apr 2022
Dataset Distillation by Matching Training Trajectories
Dataset Distillation by Matching Training TrajectoriesComputer Vision and Pattern Recognition (CVPR), 2022
George Cazenavette
Tongzhou Wang
Antonio Torralba
Alexei A. Efros
Jun-Yan Zhu
FedMLDD
347
488
0
22 Mar 2022
123
Next