ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2505.19350
  4. Cited By
FlashMD: long-stride, universal prediction of molecular dynamics

FlashMD: long-stride, universal prediction of molecular dynamics

25 May 2025
Filippo Bigi
Sanggyu Chong
Agustinus Kristiadi
Michele Ceriotti
    AI4CE
ArXiv (abs)PDFHTML

Papers citing "FlashMD: long-stride, universal prediction of molecular dynamics"

3 / 3 papers shown
Title
Force-Free Molecular Dynamics Through Autoregressive Equivariant Networks
Force-Free Molecular Dynamics Through Autoregressive Equivariant Networks
Fabian L. Thiemann
Thiago Reschützegger
Massimiliano Esposito
Tseden Taddese
Juan D. Olarte-Plata
Fausto Martelli
AI4CE
125
1
0
31 Mar 2025
A practical guide to machine learning interatomic potentials -- Status and future
Ryan Jacobs
D. Morgan
Siamak Attarian
Jun Meng
Chen Shen
...
K. J. Schmidt
So Takamoto
Aidan Thompson
Julia Westermayr
Brandon M. Wood
111
8
0
12 Mar 2025
The dark side of the forces: assessing non-conservative force models for atomistic machine learning
The dark side of the forces: assessing non-conservative force models for atomistic machine learning
Filippo Bigi
Marcel F. Langer
Michele Ceriotti
AI4CE
268
12
0
16 Dec 2024
1