ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2505.21441
  4. Cited By
Autoencoding Random Forests

Autoencoding Random Forests

27 May 2025
Binh Duc Vu
Jan Kapar
Marvin N. Wright
David S. Watson
ArXivPDFHTML

Papers citing "Autoencoding Random Forests"

32 / 32 papers shown
Title
Inference with Mondrian Random Forests
Inference with Mondrian Random Forests
M. D. Cattaneo
Jason M. Klusowski
W. Underwood
78
8
0
15 Oct 2023
Mixed-Type Tabular Data Synthesis with Score-based Diffusion in Latent
  Space
Mixed-Type Tabular Data Synthesis with Score-based Diffusion in Latent Space
Hengrui Zhang
Jiani Zhang
Balasubramaniam Srinivasan
Zhengyuan Shen
Xiao Qin
Christos Faloutsos
Huzefa Rangwala
George Karypis
DiffM
52
96
0
14 Oct 2023
Language Modeling Is Compression
Language Modeling Is Compression
Grégoire Delétang
Anian Ruoss
Paul-Ambroise Duquenne
Elliot Catt
Tim Genewein
...
Wenliang Kevin Li
Matthew Aitchison
Laurent Orseau
Marcus Hutter
J. Veness
AI4CE
76
139
0
19 Sep 2023
Adversarial random forests for density estimation and generative
  modeling
Adversarial random forests for density estimation and generative modeling
David S. Watson
Kristin Blesch
Jan Kapar
Marvin N. Wright
GAN
72
21
0
19 May 2022
Exploration in Deep Reinforcement Learning: A Survey
Exploration in Deep Reinforcement Learning: A Survey
Pawel Ladosz
Lilian Weng
Minwoo Kim
H. Oh
OffRL
45
334
0
02 May 2022
Kernel PCA with the Nyström method
Kernel PCA with the Nyström method
Fredrik Hallgren
18
2
0
12 Sep 2021
Tabular Data: Deep Learning is Not All You Need
Tabular Data: Deep Learning is Not All You Need
Ravid Shwartz-Ziv
Amitai Armon
LMTD
100
1,233
0
06 Jun 2021
Joints in Random Forests
Joints in Random Forests
Alvaro H. C. Correia
Robert Peharz
Cassio de Campos
TPM
21
34
0
25 Jun 2020
On Completeness-aware Concept-Based Explanations in Deep Neural Networks
On Completeness-aware Concept-Based Explanations in Deep Neural Networks
Chih-Kuan Yeh
Been Kim
Sercan O. Arik
Chun-Liang Li
Tomas Pfister
Pradeep Ravikumar
FAtt
176
302
0
17 Oct 2019
Modeling Tabular data using Conditional GAN
Modeling Tabular data using Conditional GAN
Lei Xu
Maria Skoularidou
Alfredo Cuesta-Infante
K. Veeramachaneni
CML
MU
SyDa
GAN
77
1,232
0
01 Jul 2019
Learning Interpretable Characteristic Kernels via Decision Forests
Learning Interpretable Characteristic Kernels via Decision Forests
Sambit Panda
Cencheng Shen
Joshua T. Vogelstein
46
6
0
30 Nov 2018
Distilling a Neural Network Into a Soft Decision Tree
Distilling a Neural Network Into a Soft Decision Tree
Nicholas Frosst
Geoffrey E. Hinton
210
635
0
27 Nov 2017
AutoEncoder by Forest
AutoEncoder by Forest
Ji Feng
Zhi Zhou
AI4CE
42
63
0
26 Sep 2017
A Brief Survey of Deep Reinforcement Learning
A Brief Survey of Deep Reinforcement Learning
Kai Arulkumaran
M. Deisenroth
Miles Brundage
Anil Anthony Bharath
OffRL
96
2,792
0
19 Aug 2017
Generalized Random Forests
Generalized Random Forests
Susan Athey
J. Tibshirani
Stefan Wager
115
1,348
0
05 Oct 2016
The Mondrian Kernel
The Mondrian Kernel
Matej Balog
Balaji Lakshminarayanan
Zoubin Ghahramani
Daniel M. Roy
Yee Whye Teh
86
27
0
16 Jun 2016
XGBoost: A Scalable Tree Boosting System
XGBoost: A Scalable Tree Boosting System
Tianqi Chen
Carlos Guestrin
344
37,815
0
09 Mar 2016
A Random Forest Guided Tour
A Random Forest Guided Tour
Gérard Biau
Erwan Scornet
AI4TS
172
2,784
0
18 Nov 2015
Estimation and Inference of Heterogeneous Treatment Effects using Random
  Forests
Estimation and Inference of Heterogeneous Treatment Effects using Random Forests
Stefan Wager
Susan Athey
SyDa
CML
131
2,474
0
14 Oct 2015
ranger: A Fast Implementation of Random Forests for High Dimensional
  Data in C++ and R
ranger: A Fast Implementation of Random Forests for High Dimensional Data in C++ and R
Marvin N. Wright
A. Ziegler
202
2,760
0
18 Aug 2015
Distilling the Knowledge in a Neural Network
Distilling the Knowledge in a Neural Network
Geoffrey E. Hinton
Oriol Vinyals
J. Dean
FedML
236
19,523
0
09 Mar 2015
Random forests and kernel methods
Random forests and kernel methods
Erwan Scornet
113
229
0
12 Feb 2015
On the asymptotics of random forests
On the asymptotics of random forests
Erwan Scornet
28
88
0
07 Sep 2014
OpenML: networked science in machine learning
OpenML: networked science in machine learning
Joaquin Vanschoren
Jan N. van Rijn
B. Bischl
Luís Torgo
FedML
AI4CE
95
1,310
0
29 Jul 2014
Mondrian Forests: Efficient Online Random Forests
Mondrian Forests: Efficient Online Random Forests
Balaji Lakshminarayanan
Daniel M. Roy
Yee Whye Teh
46
216
0
10 Jun 2014
The Random Forest Kernel and other kernels for big data from random
  partitions
The Random Forest Kernel and other kernels for big data from random partitions
Alex O. Davies
Zoubin Ghahramani
85
65
0
18 Feb 2014
Narrowing the Gap: Random Forests In Theory and In Practice
Narrowing the Gap: Random Forests In Theory and In Practice
Misha Denil
David Matheson
Nando de Freitas
112
229
0
04 Oct 2013
Representation Learning: A Review and New Perspectives
Representation Learning: A Review and New Perspectives
Yoshua Bengio
Aaron Courville
Pascal Vincent
OOD
SSL
182
12,384
0
24 Jun 2012
Analysis of a Random Forests Model
Analysis of a Random Forests Model
Gérard Biau
86
1,390
0
03 May 2010
Universality, Characteristic Kernels and RKHS Embedding of Measures
Universality, Characteristic Kernels and RKHS Embedding of Measures
Bharath K. Sriperumbudur
Kenji Fukumizu
Gert R. G. Lanckriet
151
526
0
03 Mar 2010
A Kernel Method for the Two-Sample Problem
A Kernel Method for the Two-Sample Problem
Arthur Gretton
Karsten Borgwardt
Malte J. Rasch
Bernhard Schölkopf
Alex Smola
166
2,348
0
15 May 2008
A Tutorial on Spectral Clustering
A Tutorial on Spectral Clustering
U. V. Luxburg
181
10,497
0
01 Nov 2007
1