ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2505.24641
270
4

A Cross Branch Fusion-Based Contrastive Learning Framework for Point Cloud Self-supervised Learning

International Conference on 3D Vision (3DV), 2024
30 May 2025
Chengzhi Wu
Qianliang Huang
Kun Jin
Julius Pfrommer
Jürgen Beyerer
    3DPCSSL
ArXiv (abs)PDFHTML
Main:8 Pages
4 Figures
Bibliography:3 Pages
9 Tables
Abstract

Contrastive learning is an essential method in self-supervised learning. It primarily employs a multi-branch strategy to compare latent representations obtained from different branches and train the encoder. In the case of multi-modal input, diverse modalities of the same object are fed into distinct branches. When using single-modal data, the same input undergoes various augmentations before being fed into different branches. However, all existing contrastive learning frameworks have so far only performed contrastive operations on the learned features at the final loss end, with no information exchange between different branches prior to this stage. In this paper, for point cloud unsupervised learning without the use of extra training data, we propose a Contrastive Cross-branch Attention-based framework for Point cloud data (termed PoCCA), to learn rich 3D point cloud representations. By introducing sub-branches, PoCCA allows information exchange between different branches before the loss end. Experimental results demonstrate that in the case of using no extra training data, the representations learned with our self-supervised model achieve state-of-the-art performances when used for downstream tasks on point clouds.

View on arXiv
Comments on this paper