ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2506.21205
104
2
v1v2 (latest)

Dynamic Risk-Aware MPPI for Mobile Robots in Crowds via Efficient Monte Carlo Approximations

26 June 2025
Elia Trevisan
Khaled A. Mustafa
Godert Notten
Xinwei Wang
Javier Alonso-Mora
ArXiv (abs)PDFHTML
Main:7 Pages
6 Figures
Bibliography:1 Pages
4 Tables
Abstract

Deploying mobile robots safely among humans requires the motion planner to account for the uncertainty in the other agents' predicted trajectories. This remains challenging in traditional approaches, especially with arbitrarily shaped predictions and real-time constraints. To address these challenges, we propose a Dynamic Risk-Aware Model Predictive Path Integral control (DRA-MPPI), a motion planner that incorporates uncertain future motions modelled with potentially non-Gaussian stochastic predictions. By leveraging MPPI's gradient-free nature, we propose a method that efficiently approximates the joint Collision Probability (CP) among multiple dynamic obstacles for several hundred sampled trajectories in real-time via a Monte Carlo (MC) approach. This enables the rejection of samples exceeding a predefined CP threshold or the integration of CP as a weighted objective within the navigation cost function. Consequently, DRA-MPPI mitigates the freezing robot problem while enhancing safety. Real-world and simulated experiments with multiple dynamic obstacles demonstrate DRA-MPPI's superior performance compared to state-of-the-art approaches, including Scenario-based Model Predictive Control (S-MPC), Frenet planner, and vanilla MPPI.

View on arXiv
Comments on this paper