ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2507.06625
104
0
v1v2 (latest)

Q-STAC: Q-Guided Stein Variational Model Predictive Actor-Critic

9 July 2025
Shizhe Cai
Jayadeep Jacob
Zeya Yin
Fabio Ramos
    BDL
ArXiv (abs)PDFHTML
Main:7 Pages
5 Figures
Bibliography:2 Pages
Abstract

Deep reinforcement learning has shown remarkable success in continuous control tasks, yet often requires extensive training data, struggles with complex, long-horizon planning, and fails to maintain safety constraints during operation. Meanwhile, Model Predictive Control (MPC) offers explainability and constraint satisfaction, but typically yields only locally optimal solutions and demands careful cost function design. This paper introduces the Q-guided STein variational model predictive Actor-Critic (Q-STAC), a novel framework that bridges these approaches by integrating Bayesian MPC with actor-critic reinforcement learning through constrained Stein Variational Gradient Descent (SVGD). Our method optimizes control sequences directly using learned Q-values as objectives, eliminating the need for explicit cost function design while leveraging known system dynamics to enhance sample efficiency and ensure control signals remain within safe boundaries. Extensive experiments on 2D navigation and robotic manipulation tasks demonstrate that Q-STAC achieves superior sample efficiency, robustness, and optimality compared to state-of-the-art algorithms, while maintaining the high expressiveness of policy distributions. Experiment videos are available on our website: this https URL

View on arXiv
Comments on this paper