All Papers
Title |
|---|
Title |
|---|

Depth information is robust to scene appearance variations and inherently carries 3D spatial details. In this paper, a visual backbone based on the vision transformer is proposed to fuse RGB and depth modalities for enhancing generalization. Different modalities are first processed by separate CNN stems, and the combined convolutional features are delivered to the scalable vision transformer to obtain visual representations. Moreover, a contrastive unsupervised learning scheme is designed with masked and unmasked tokens to accelerate the sample efficiency during the reinforcement learning process. Simulation results demonstrate that our visual backbone can focus more on task-related regions and exhibit better generalization in unseen scenarios. For sim2real transfer, a flexible curriculum learning schedule is developed to deploy domain randomization over training processes. Finally, the feasibility of our model is validated to perform real-world manipulation tasks via zero-shot transfer.
View on arXiv