ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2507.11344
22
0

Guiding LLM Decision-Making with Fairness Reward Models

15 July 2025
Zara Hall
Melanie Subbiah
Thomas P Zollo
Kathleen McKeown
Richard Zemel
    FaMLLRM
ArXiv (abs)PDFHTML
Main:17 Pages
18 Figures
Bibliography:7 Pages
2 Tables
Appendix:8 Pages
Abstract

Large language models are increasingly used to support high-stakes decisions, potentially influencing who is granted bail or receives a loan. Naive chain-of-thought sampling can improve average decision accuracy, but has also been shown to amplify unfair bias. To address this challenge and enable the trustworthy use of reasoning models in high-stakes decision-making, we propose a framework for training a generalizable Fairness Reward Model (FRM). Our model assigns a fairness score to LLM reasoning, enabling the system to down-weight biased trajectories and favor equitable ones when aggregating decisions across reasoning chains. We show that a single Fairness Reward Model, trained on weakly supervised, LLM-annotated examples of biased versus unbiased reasoning, transfers across tasks, domains, and model families without additional fine-tuning. Applied to real-world decision-making tasks including recidivism prediction and social media moderation, we show that our approach consistently improves fairness while matching, or even surpassing, baseline accuracy.

View on arXiv
Comments on this paper