ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2026 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2507.16842
124
0

Sensor-Space Based Robust Kinematic Control of Redundant Soft Manipulator by Learning

19 July 2025
Yinan Meng
Kun Qian
Jiong Yang
Renbo Su
Zhenhong Li
Charlie C. L. Wang
ArXiv (abs)PDFHTML
Main:14 Pages
18 Figures
Bibliography:2 Pages
Abstract

The intrinsic compliance and high degree of freedom (DoF) of redundant soft manipulators facilitate safe interaction and flexible task execution. However, effective kinematic control remains highly challenging, as it must handle deformations caused by unknown external loads and avoid actuator saturation due to improper null-space regulation - particularly in confined environments. In this paper, we propose a Sensor-Space Imitation Learning Kinematic Control (SS-ILKC) framework to enable robust kinematic control under actuator saturation and restrictive environmental constraints. We employ a dual-learning strategy: a multi-goal sensor-space control framework based on reinforcement learning principle is trained in simulation to develop robust control policies for open spaces, while a generative adversarial imitation learning approach enables effective policy learning from sparse expert demonstrations for confined spaces. To enable zero-shot real-world deployment, a pre-processed sim-to-real transfer mechanism is proposed to mitigate the simulation-to-reality gap and accurately characterize actuator saturation limits. Experimental results demonstrate that our method can effectively control a pneumatically actuated soft manipulator, achieving precise path-following and object manipulation in confined environments under unknown loading conditions.

View on arXiv
Comments on this paper