ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2508.01269
120
0
v1v2 (latest)

ModelNet40-E: An Uncertainty-Aware Benchmark for Point Cloud Classification

2 August 2025
Pedro Alonso
Tianrui Li
Chongshou Li
    3DPC
ArXiv (abs)PDFHTML
Main:9 Pages
6 Figures
Bibliography:4 Pages
6 Tables
Abstract

We introduce ModelNet40-E, a new benchmark designed to assess the robustness and calibration of point cloud classification models under synthetic LiDAR-like noise. Unlike existing benchmarks, ModelNet40-E provides both noise-corrupted point clouds and point-wise uncertainty annotations via Gaussian noise parameters ({\sigma}, {\mu}), enabling fine-grained evaluation of uncertainty modeling. We evaluate three popular models-PointNet, DGCNN, and Point Transformer v3-across multiple noise levels using classification accuracy, calibration metrics, and uncertainty-awareness. While all models degrade under increasing noise, Point Transformer v3 demonstrates superior calibration, with predicted uncertainties more closely aligned with the underlying measurement uncertainty.

View on arXiv
Comments on this paper