ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2508.02128
  4. Cited By
Amber Pruner: Leveraging N:M Activation Sparsity for Efficient Prefill in Large Language Models

Amber Pruner: Leveraging N:M Activation Sparsity for Efficient Prefill in Large Language Models

4 August 2025
Tai An
Ruwu Cai
Yanzhe Zhang
Yang Liu
Hao Chen
Pengcheng Xie
Sheng Chang
Jing Lin
Gongyi Wang
    MoE
ArXiv (abs)PDFHTML

Papers citing "Amber Pruner: Leveraging N:M Activation Sparsity for Efficient Prefill in Large Language Models"

1 / 1 papers shown
Title
Lightweight error mitigation strategies for post-training N:M activation sparsity in LLMs
Lightweight error mitigation strategies for post-training N:M activation sparsity in LLMs
Shirin Alanova
Kristina Kazistova
Ekaterina Galaeva
Alina Kostromina
Vladimir Smirnov
Redko Dmitry
Alexey Dontsov
Maxim Zhelnin
Evgeny Burnaev
Egor Shvetsov
120
0
0
26 Sep 2025
1