ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2508.03186
76
0

Monocular Depth Estimation with Global-Aware Discretization and Local Context Modeling

5 August 2025
Heng Wu
Qian Zhang
Guixu Zhang
    MDE
ArXiv (abs)PDFHTML
Main:12 Pages
6 Figures
3 Tables
Abstract

Accurate monocular depth estimation remains a challenging problem due to the inherent ambiguity that stems from the ill-posed nature of recovering 3D structure from a single view, where multiple plausible depth configurations can produce identical 2D projections. In this paper, we present a novel depth estimation method that combines both local and global cues to improve prediction accuracy. Specifically, we propose the Gated Large Kernel Attention Module (GLKAM) to effectively capture multi-scale local structural information by leveraging large kernel convolutions with a gated mechanism. To further enhance the global perception of the network, we introduce the Global Bin Prediction Module (GBPM), which estimates the global distribution of depth bins and provides structural guidance for depth regression. Extensive experiments on the NYU-V2 and KITTI dataset demonstrate that our method achieves competitive performance and outperforms existing approaches, validating the effectiveness of each proposed component.

View on arXiv
Comments on this paper