ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2026 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2508.09303
  4. Cited By
ParallelSearch: Train your LLMs to Decompose Query and Search Sub-queries in Parallel with Reinforcement Learning

ParallelSearch: Train your LLMs to Decompose Query and Search Sub-queries in Parallel with Reinforcement Learning

12 August 2025
Shu Zhao
Tan Yu
Anbang Xu
Japinder Singh
Aaditya Shukla
Rama Akkiraju
    ReLMAI4TSLRM
ArXiv (abs)PDFHTML

Papers citing "ParallelSearch: Train your LLMs to Decompose Query and Search Sub-queries in Parallel with Reinforcement Learning"

8 / 8 papers shown
Beyond Single Embeddings: Capturing Diverse Targets with Multi-Query Retrieval
Beyond Single Embeddings: Capturing Diverse Targets with Multi-Query Retrieval
Hung-Ting Chen
Xiang Liu
Shauli Ravfogel
Eunsol Choi
102
0
0
04 Nov 2025
GlobalRAG: Enhancing Global Reasoning in Multi-hop Question Answering via Reinforcement Learning
GlobalRAG: Enhancing Global Reasoning in Multi-hop Question Answering via Reinforcement Learning
Jinchang Luo
Mingquan Cheng
Fan Wan
Ni Li
Xiaoling Xia
Shuangshuang Tian
Tingcheng Bian
Haiwei Wang
Haohuan Fu
Yan Tao
ReLMRALMLRM
476
0
0
23 Oct 2025
A Comprehensive Survey on Reinforcement Learning-based Agentic Search: Foundations, Roles, Optimizations, Evaluations, and Applications
A Comprehensive Survey on Reinforcement Learning-based Agentic Search: Foundations, Roles, Optimizations, Evaluations, and Applications
Minhua Lin
Zongyu Wu
Zhichao Xu
Hui Liu
Xianfeng Tang
Qi He
Charu C. Aggarwal
Hui Liu
Xiang Zhang
Suhang Wang
AI4TSLRM
558
1
0
19 Oct 2025
Beyond Outcome Reward: Decoupling Search and Answering Improves LLM Agents
Beyond Outcome Reward: Decoupling Search and Answering Improves LLM Agents
Yiding Wang
Zhepei Wei
Xinyu Zhu
Yu Meng
161
1
0
06 Oct 2025
Erase to Improve: Erasable Reinforcement Learning for Search-Augmented LLMs
Erase to Improve: Erasable Reinforcement Learning for Search-Augmented LLMs
Ziliang Wang
Kang An
Xuhui Zheng
FaQiang Qian
WeiKun Zhang
Cijun Ouyang
Jialu Cai
Y. Wang
Yichao Wu
KELMLRM
110
1
0
01 Oct 2025
Flash-Searcher: Fast and Effective Web Agents via DAG-Based Parallel Execution
Flash-Searcher: Fast and Effective Web Agents via DAG-Based Parallel Execution
Tianrui Qin
Qianben Chen
S. Wang
He Xing
King Zhu
...
G. Zhang
Jiaheng Liu
Yuchen Eleanor Jiang
Xitong Gao
Wangchunshu Zhou
LLMAGLRM
160
5
0
29 Sep 2025
Your Dense Retriever is Secretly an Expeditious Reasoner
Your Dense Retriever is Secretly an Expeditious Reasoner
Y. Zhang
Jun Bai
Zhixin Cai
Shuhan Qin
Zhuofan Chen
Jinghua Guan
Wenge Rong
LRM
268
0
0
27 Sep 2025
Hybrid Deep Searcher: Integrating Parallel and Sequential Search Reasoning
Hybrid Deep Searcher: Integrating Parallel and Sequential Search Reasoning
Dayoon Ko
J. Kim
Haeju Park
Sohyeon Kim
Dahyun Lee
Yongrae Jo
Gunhee Kim
Moontae Lee
Kyungjae Lee
LRMVLM
96
4
0
26 Aug 2025
1