ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2026 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2508.17768
  4. Cited By
Towards Trustworthy Breast Tumor Segmentation in Ultrasound using Monte Carlo Dropout and Deep Ensembles for Epistemic Uncertainty Estimation

Towards Trustworthy Breast Tumor Segmentation in Ultrasound using Monte Carlo Dropout and Deep Ensembles for Epistemic Uncertainty Estimation

25 August 2025
Toufiq Musah
Chinasa Kalaiwo
Maimoona Akram
Ubaida Napari Abdulai
Maruf Adewole
Farouk Dako
A. Emegoakor
U. Anazodo
Prince Ebenezer Adjei
Confidence Raymond
    UQCVOOD
ArXiv (abs)PDFHTMLGithub

Papers citing "Towards Trustworthy Breast Tumor Segmentation in Ultrasound using Monte Carlo Dropout and Deep Ensembles for Epistemic Uncertainty Estimation"

0 / 0 papers shown

No papers found