ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2026 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2509.05954
104
0

StripDet: Strip Attention-Based Lightweight 3D Object Detection from Point Cloud

7 September 2025
Weichao Wang
Wendong Mao
Zhongfeng Wang
    3DPC
ArXiv (abs)PDFHTML
Main:3 Pages
2 Figures
Bibliography:2 Pages
Abstract

The deployment of high-accuracy 3D object detection models from point cloud remains a significant challenge due to their substantial computational and memory requirements. To address this, we introduce StripDet, a novel lightweight framework designed for on-device efficiency. First, we propose the novel Strip Attention Block (SAB), a highly efficient module designed to capture long-range spatial dependencies. By decomposing standard 2D convolutions into asymmetric strip convolutions, SAB efficiently extracts directional features while reducing computational complexity from quadratic to linear. Second, we design a hardware-friendly hierarchical backbone that integrates SAB with depthwise separable convolutions and a simple multiscale fusion strategy, achieving end-to-end efficiency. Extensive experiments on the KITTI dataset validate StripDet's superiority. With only 0.65M parameters, our model achieves a 79.97% mAP for car detection, surpassing the baseline PointPillars with a 7x parameter reduction. Furthermore, StripDet outperforms recent lightweight and knowledge distillation-based methods, achieving a superior accuracy-efficiency trade-off while establishing itself as a practical solution for real-world 3D detection on edge devices.

View on arXiv
Comments on this paper