ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2026 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2509.07768
  4. Cited By
Are LLMs Enough for Hyperpartisan, Fake, Polarized and Harmful Content Detection? Evaluating In-Context Learning vs. Fine-Tuning

Are LLMs Enough for Hyperpartisan, Fake, Polarized and Harmful Content Detection? Evaluating In-Context Learning vs. Fine-Tuning

9 September 2025
Michele Joshua Maggini
Dhia Merzougui
Rabiraj Bandyopadhyay
Gaël Dias
Fabrice Maurel
Pablo Gamallo
ArXiv (abs)PDFHTMLGithub (39★)

Papers citing "Are LLMs Enough for Hyperpartisan, Fake, Polarized and Harmful Content Detection? Evaluating In-Context Learning vs. Fine-Tuning"

0 / 0 papers shown

No papers found