ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2509.15154
120
0

MedFact-R1: Towards Factual Medical Reasoning via Pseudo-Label Augmentation

18 September 2025
Gengliang Li
Rongyu Chen
Bin Li
Linlin Yang
Guodong Ding
    HILMMedImLRM
ArXiv (abs)PDFHTMLGithub
Main:4 Pages
2 Figures
Bibliography:1 Pages
3 Tables
Abstract

Ensuring factual consistency and reliable reasoning remains a critical challenge for medical vision-language models. We introduce MEDFACT-R1, a two-stage framework that integrates external knowledge grounding with reinforcement learning to improve the factual medical reasoning. The first stage uses pseudo-label supervised fine-tuning (SFT) to incorporate external factual expertise; while the second stage applies Group Relative Policy Optimization (GRPO) with four tailored factual reward signals to encourage self-consistent reasoning. Across three public medical QA benchmarks, MEDFACT-R1 delivers up to 22.5% absolute improvement in factual accuracy over previous state-of-the-art methods. Ablation studies highlight the necessity of pseudo-label SFT cold start and validate the contribution of each GRPO reward, underscoring the synergy between knowledge grounding and RL-driven reasoning for trustworthy medical AI. Codes are released atthis https URL.

View on arXiv
Comments on this paper