111

VLN-Zero: Rapid Exploration and Cache-Enabled Neurosymbolic Vision-Language Planning for Zero-Shot Transfer in Robot Navigation

Main:7 Pages
8 Figures
Bibliography:2 Pages
2 Tables
Abstract

Rapid adaptation in unseen environments is essential for scalable real-world autonomy, yet existing approaches rely on exhaustive exploration or rigid navigation policies that fail to generalize. We present VLN-Zero, a two-phase vision-language navigation framework that leverages vision-language models to efficiently construct symbolic scene graphs and enable zero-shot neurosymbolic navigation. In the exploration phase, structured prompts guide VLM-based search toward informative and diverse trajectories, yielding compact scene graph representations. In the deployment phase, a neurosymbolic planner reasons over the scene graph and environmental observations to generate executable plans, while a cache-enabled execution module accelerates adaptation by reusing previously computed task-location trajectories. By combining rapid exploration, symbolic reasoning, and cache-enabled execution, the proposed framework overcomes the computational inefficiency and poor generalization of prior vision-language navigation methods, enabling robust and scalable decision-making in unseen environments. VLN-Zero achieves 2x higher success rate compared to state-of-the-art zero-shot models, outperforms most fine-tuned baselines, and reaches goal locations in half the time with 55% fewer VLM calls on average compared to state-of-the-art models across diverse environments. Codebase, datasets, and videos for VLN-Zero are available at:this https URL.

View on arXiv
Comments on this paper