ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2509.19301
60
0
v1v2 (latest)

Residual Off-Policy RL for Finetuning Behavior Cloning Policies

23 September 2025
Lars Ankile
Zhenyu Jiang
Rocky Duan
Guanya Shi
Pieter Abbeel
Anusha Nagabandi
    OffRL
ArXiv (abs)PDFHTMLHuggingFace (16 upvotes)
Main:7 Pages
7 Figures
Bibliography:2 Pages
Abstract

Recent advances in behavior cloning (BC) have enabled impressive visuomotor control policies. However, these approaches are limited by the quality of human demonstrations, the manual effort required for data collection, and the diminishing returns from offline data. In comparison, reinforcement learning (RL) trains an agent through autonomous interaction with the environment and has shown remarkable success in various domains. Still, training RL policies directly on real-world robots remains challenging due to sample inefficiency, safety concerns, and the difficulty of learning from sparse rewards for long-horizon tasks, especially for high-degree-of-freedom (DoF) systems.We present a recipe that combines the benefits of BC and RL through a residual learning framework. Our approach leverages BC policies as black-box bases and learns lightweight per-step residual corrections via sample-efficient off-policy RL. We demonstrate that our method requires only sparse binary reward signals and can effectively improve manipulation policies on high-degree-of-freedom (DoF) systems in both simulation and the real world. In particular, we demonstrate, to the best of our knowledge, the first successful real-world RL training on a humanoid robot with dexterous hands. Our results demonstrate state-of-the-art performance in various vision-based tasks, pointing towards a practical pathway for deploying RL in the real world.

View on arXiv
Comments on this paper