ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2026 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2510.10467
  4. Cited By
AnyBCQ: Hardware Efficient Flexible Binary-Coded Quantization for Multi-Precision LLMs

AnyBCQ: Hardware Efficient Flexible Binary-Coded Quantization for Multi-Precision LLMs

12 October 2025
Gunho Park
Jeongin Bae
Beomseok Kwon
Byeongwook Kim
S. Kwon
Dongsoo Lee
    MQ
ArXiv (abs)PDFHTML

Papers citing "AnyBCQ: Hardware Efficient Flexible Binary-Coded Quantization for Multi-Precision LLMs"

1 / 1 papers shown
ELUTQ: Optimizing Quantization Accuracy under LUT-Based Computation for Edge LLMs
ELUTQ: Optimizing Quantization Accuracy under LUT-Based Computation for Edge LLMs
Xin Nie
Liang Dong
H. Zhang
JiaWang Xiao
G. Sun
MQ
461
0
0
22 Oct 2025
1