SemiETPicker: Fast and Label-Efficient Particle Picking for CryoET Tomography Using Semi-Supervised Learning
- 3DPC

Cryogenic Electron Tomography (CryoET) combined with sub-volume averaging (SVA) is the only imaging modality capable of resolving protein structures inside cells at molecular resolution. Particle picking, the task of localizing and classifying target proteins in 3D CryoET volumes, remains the main bottleneck. Due to the reliance on time-consuming manual labels, the vast reserve of unlabeled tomograms remains underutilized. In this work, we present a fast, label-efficient semi-supervised framework that exploits this untapped data. Our framework consists of two components: (i) an end-to-end heatmap-supervised detection model inspired by keypoint detection, and (ii) a teacher-student co-training mechanism that enhances performance under sparse labeling conditions. Furthermore, we introduce multi-view pseudo-labeling and a CryoET-specific DropBlock augmentation strategy to further boost performance. Extensive evaluations on the large-scale CZII dataset show that our approach improves F1 by 10% over supervised baselines, underscoring the promise of semi-supervised learning for leveraging unlabeled CryoET data.
View on arXiv