ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2510.25463
32
0

SPADE: Sparsity Adaptive Depth Estimator for Zero-Shot, Real-Time, Monocular Depth Estimation in Underwater Environments

29 October 2025
Hongjie Zhang
Gideon Billings
Stefan Williams
    MDE
ArXiv (abs)PDFHTML
Main:9 Pages
10 Figures
Bibliography:1 Pages
7 Tables
Abstract

Underwater infrastructure requires frequent inspection and maintenance due to harsh marine conditions. Current reliance on human divers or remotely operated vehicles is limited by perceptual and operational challenges, especially around complex structures or in turbid water. Enhancing the spatial awareness of underwater vehicles is key to reducing piloting risks and enabling greater autonomy. To address these challenges, we present SPADE: SParsity Adaptive Depth Estimator, a monocular depth estimation pipeline that combines pre-trained relative depth estimator with sparse depth priors to produce dense, metric scale depth maps. Our two-stage approach first scales the relative depth map with the sparse depth points, then refines the final metric prediction with our proposed Cascade Conv-Deformable Transformer blocks. Our approach achieves improved accuracy and generalisation over state-of-the-art baselines and runs efficiently at over 15 FPS on embedded hardware, promising to support practical underwater inspection and intervention. This work has been submitted to IEEE Journal of Oceanic Engineering Special Issue of AUV 2026.

View on arXiv
Comments on this paper